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Abstract

We present a novel Divide and Conquer (D&C) design methodology for separating the handling of competing objective in controllers. By guarantying a Nash Equilibrium in a virtual game, we synthesize a
controller that establishes a balance between the objectives and allows the control engineer a disciplined method for tuning the parameters along the design cycle.

Continuous Linear-Time-Invariant (LTI) System

A continuous dynamical system S, with state and input vectors x(t) ∈ X ⊆ Rn and
u(t) ∈ U ⊆ Rm, defined for all t ∈ I = [t0, Tf ] ⊆ R, is LTI if it is governed by the following first
order differential equation, which is called its state space representation:

ẋ(t) = Ax(t) +Bu(t)

with a given initial condition x(t0) := x0 ∈ X and possibly a desired state (in case of signal
tracking) x(Tf) := xT ∈ X where:

A ∈ Rn×n is a time-invariant matrix representing the unforced dynamics of S;
B ∈ Rn×m is the time-invariant input coefficients matrix of S.

S can be illustrated by the following block diagram:

+
∫
dtB

A

ẋ(t) x(t)u(t)

Continuous Virtually Decomposed LTI System

Given a continuous LTI system S, and N ∈ N, an equivalent virtually decomposed LTI
system, denoted SN is defined as an LTI system that adheres the following model:

ẋ(t) = Ax(t) +
N∑
i=1

Bivi(t)

while satisfying:

Bu(t) =
N∑
i=1

Bivi(t)

and where:(
vi(t)

)N
i=1

are virtual input vectors, with each being a vector of some length mi ∈ N such

that vi(t) ∈ Vi ⊆ Rmi. We denote V :=×N

i=1
Vi ⊆ R

∑N
i=1mi;(

Bi

)N
i=1

are virtual input coefficients matrices where each Bi ∈ Rn×mi.

SN can be illustrated by the following block diagram:

+
∫
dt+

B1

...

BN A

ẋ(t) x(t)

v1(t)

vN(t)

Open-Loop Nash Equilibrium

Given a decomposed system SN , its virtual quadratic cost functions are a series of functions
(Ji)

N
i=1, where each Ji : X × V × I → R+ assumes the following form:

Ji
(
x(t), (vj(t))

N
j=1, t

)
:=

∫
Tf

t

[
xT (τ )Qix(τ ) +

N∑
j=1

vj
T (τ )Rijvj(τ )

]
dτ + xT (Tf)Qfix(Tf),

where:

(Qi)
N
i=1 are virtual state weights, each Qi ∈ Rn×n is a positive semi-definite matrix;(

(Rij)
N
j=1

)N
i=1

are virtual input weights, each Rij ∈ Rmj×mj is a positive definite matrix.

With that, a series of virtual policies (v∗
j (t))

N
j=1 is said to constitute an Open-Loop Nash

Equilibrium if for all 1 ≤ i ≤ N :

Ji

(
x(t), (v∗

j (t))
N
j=1, t

)
≤ Ji

(
x(t), (v∗

j (t))
N
j=1
j ̸=i

,vi(t), t

)
for any other admissable virtual input vi(t) ∈ Vi and for all t ∈ I. In words, a series of virtual
inputs (v∗

j (t))
N
j=1 constitutes an Open-Loop Nash equilibrium if it is not possible to decrease any

cost function Ji(t) only by changing its corresponding virtual input v∗
i (t) to some other input vi(t).

Nash Equilibrium Solution

The Open-Loop Nash Equilibrium problem is solved by closed-loop feedback policies (v∗
i (t))

N
i=1 of

the following form:
v∗
i (t) := −R−1

ii B
T
i P

∗
i (t)x(t),

where the matrices (P ∗
i (t))

N
j=1 are a solution to the following set of coupled matrix differential

Riccati equations:

Ṗi(t) + AT
cl(t)Pi(t) + Pi(t)Acl(t) +Qi +

N∑
j=1

Pj(t)BjR
−1
jj RijR

−1
jj B

T
j Pj(t) = 0,

with Acl(t) := A−
∑N

j=1BjR
−1
jj B

T
j Pj(t), along with appropriate terminal conditions of the form:

(Pi(Tf))
N
i=1 ≡ (Qfi)

N
i=1

Inverted Pendulum

Consider the following system termed SIP :

mp, L, I

mc

θ(t)

M(t)

F (t) xc

x(t)

y

with the following linearized mode:


ẋ(t)

θ̇(t)
ẍ(t)

θ̈(t)


︸ ︷︷ ︸

ẋ(t)

=


0 0 1 0
0 0 0 1

0
m2

pgL
2

mcmpL2+4I(mc+mp)
0 0

0
4mpgl(mc+mp)

mcmpL2+4I(mc+mp)
0 0


︸ ︷︷ ︸

A


x(t)
θ(t)
ẋ(t)

θ̇(t)


︸ ︷︷ ︸

x(t)

+


0 0
0 0

mpL
2+4I

mcmpL2+4I(mc+mp)
2mpL

mcmpL2+4I(mc+mp)
2mpL

mcmpL2+4I(mc+mp)
4(mc+mp)

mcmpL2+4I(mc+mp)


︸ ︷︷ ︸

B

[
F (t)
M(t)

]
︸ ︷︷ ︸

u(t)

.

We decompose the system using the following virtual inputs:

vx(t) :=
mpL

2 + 4I

mcmpL2 + 4I(mc +mp)
F (t) +

2mpL

mcmpL2 + 4I(mc +mp)
M(t)

vθ(t) :=
2mpL

mcmpL2 + 4I(mc +mp)
F (t) +

4 (mc +mp)

mcmpL2 + 4I(mc +mp)
M(t).

into the following decomposed system SIP x,θ
:

ẋ(t) = Ax(t) +


0
0
1
0


︸︷︷︸
Bx

vx(t) +


0
0
0
1


︸︷︷︸
Bθ

vθ(t)

Signal tracking simulation results:

x0 :=


x0
θ0
ẋ0
θ̇0

 =


20 [m]

π/3 [rad]
0
0

 ; xT :=


−3 [m]
π/4 [rad]
10 [m/s]
5 [rad/s]

 (1)

Convergence times Tc (time to achieve the condition: ∥x(t)− xT∥ < 10−5) of SIP and SIP x,θ
for

different mc,mp, L values:

mc [kg],mp [kg], L [m]
Tc [sec] SIP SIP x,θ

20, 5, 2 14 13
50, 8, 3 20 13

100, 10, 4 27 13
200, 15, 1 36 13
1000, 40, 8 74 13
2000, 60, 20 111 13

Comparing State Space Variables with (mc,mp, L) ≡ (200, 15, 1)

A Proof-of-Concept Python Library

A tool that supports the proposed methodology is openly accessible at
https://github.com/krichelj/PyDiffGame. The tool uses a novel approach for solving
Algebraic Riccati Equations for computing equilibria of differential games.
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