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Introduction

We introduce a divide and conquer control design methodology
for single-agent, multi-objective dynamical systems

The approach starts with associating each pre-described
control objective with a corresponding virtual input that is
presumed to act upon the system

Then we associate a virtual cost functional to each virtual
input, providing each objective a set of weighting parameters
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Introduction

Next we consider a non-cooperative, non-zero-sum differential
game between the virtual inputs who represent the players

Finally, guarantying a Nash Equilibrium between the players
allows a modular, yet simple design of complex controllers

In order to demonstrate the method motivation and
application, we will now show a simple introductory example
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Main Contributions

This study provides the following core contributions:
1 Novel formulation for controllers that apply for single-agent,

multi-objective dynamic systems, by solving non-cooperative,
non-zero-sum differential games for their Nash Equilibria, in
continuous-time control systems

2 Extending the aforementioned theoretical basis and formal
mathematical formulation of the technique of single-agent
multi-objective Nash Equilibria, for direct-design discrete-time
control systems
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3 Development of an open-source Python package named
PyDiffGame, implementing the proposed method, both for the
continuous and discrete-time case

4 Derivation of a novel method for solving matrix algebraic
Riccati equations (AREs) by converting them to differential
Riccati equations (DREs) and solving them repetitively until
convergence

5 Implementing the method of solving AREs by reduction to
DREs in the Python package PyDiffGame
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Motivating Example

Consider the following modified inverted pendulum system:

mp, L

mc

θ(t)

M(t)

F(t)

g

x(t)

ŷ

x̂

For any t ∈ R≥0:
x(t) ∈ R - cart position
F(t) ∈ R - linear force
θ(t) ∈ R - pendulum angle
M(t) ∈ R - pure torque
mc, mp ∈ R+ - cart and
pendulum masses
L ∈ R+ - pendulum length
g - gravity constant
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System State Vector

The number of variables required to define the system is n = 4 and
thus let the state vector x(t) ∈ Rn = R4 of the system be defined
as such:

x(t) :=


x(t)
θ(t)
ẋ(t)
θ̇(t)



for any t ∈ R≥0
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System Initial Condition

For simplicity, let us assume a zero initial condition for the system:

x(0) =


x(0)
θ(0)
ẋ(0)
θ̇(0)

 := 0n =


0
0
0
0


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System Terminal Requirements

Let us assume it is required to converge to a specific terminal state
vector x∞ with desirable values for x and θ and zero velocities, i.e.,
we require:

x∞ := lim
t→∞

x(t) = lim
t→∞


x(t)
θ(t)
ẋ(t)
θ̇(t)

 =


x∞
θ∞
0
0



for some constants x∞ ∈ R, θ∞ ∈ [0, 2π]
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System Input

The number of non-dependant actuators acting upon the system is
m = 2 and thus let the input vector u(t) ∈ Rm = R2 of the system
be defined as such:

u(t) :=
[

F(t)
M(t)

]

for any t ∈ R≥0

10 / 34
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Linearized System Model

In this study we show the state space model of the described
system can be linearized to adhere the following Linear
Time-Invariant (LTI) model:

ẋ(t) = Ax(t) + Bu(t)

for any t ∈ R≥0

and with1:
A ∈ Rn×n = R4×4 being the dynamics matrix
B ∈ Rn×m = R4×2 being the input matrix

1Both A and B of the described system are formally derived in this study

11 / 34
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Linearized System Model Matrices

The matrices A and B are of the following form:

A :=


0 0 1 0
0 0 0 1
0 3

1+4 mc
mp

g 0 0

0 6
1+ 3

1+ 1
mc
mp

g
L 0 0

 ; B :=


0 0
0 0

4
1+4 mc

mp

1
mp

6
1+4 mc

mp

1
Lmp

6
1+4 mc

mp

1
Lmp

6
1
2+

3
1+

mp
mc

1
L2mp



Let us denote:

A :=



0 0 1 0
0 0 0 1

0
3

1 + 4ζ
g︸ ︷︷ ︸

a32

0 0

0
6

1 + 3
1+ 1

ζ

g
L︸ ︷︷ ︸

a42

0 0


; B :=



0 0
0 0

4
1 + 4ζ

1
mp︸ ︷︷ ︸

b31

6
1 + 4ζ

1
Lmp︸ ︷︷ ︸

b32
6

1 + 4ζ

1
Lmp︸ ︷︷ ︸

b32

6
1
2 +

3
1+ 1

ζ

1
L2mp︸ ︷︷ ︸

b42


with ζ := mc

mp

12 / 34



Introduction
Motivating Example

System Model
System Virtual Decomposition
Differential Game
Nash Equilibrium
Simulation

Linearized System Model Matrices

Let us denote:

A :=



0 0 1 0
0 0 0 1

0
3

1 + 4ζ
g︸ ︷︷ ︸

a32

0 0

0
6

1 + 3
1+ 1

ζ

g
L︸ ︷︷ ︸

a42

0 0


; B :=



0 0
0 0

4
1 + 4ζ

1
mp︸ ︷︷ ︸

b31

6
1 + 4ζ

1
Lmp︸ ︷︷ ︸

b32
6

1 + 4ζ

1
Lmp︸ ︷︷ ︸

b32

6
1
2 +

3
1+ 1

ζ

1
L2mp︸ ︷︷ ︸

b42


with ζ := mc

mp

12 / 34



Introduction
Motivating Example

System Model
System Virtual Decomposition
Differential Game
Nash Equilibrium
Simulation

System Virtual Decomposition

We decompose the system using the following virtual inputs:

vx(t) :=
[
b31 b32

]︸ ︷︷ ︸
Mx

[
F(t)
M(t)

]
︸ ︷︷ ︸

u(t)

= b31F(t) + b32M(t);

vθ(t) :=
[
b32 b42

]︸ ︷︷ ︸
Mθ

[
F(t)
M(t)

]
︸ ︷︷ ︸

u(t)

= b32F(t) + b42M(t)

The intention is that vx(t) ∈ Rmx = R1 = R is related to the
dynamics of x(t) and vθ(t) ∈ Rmθ = R1 = R is related to the
dynamics of θ(t)

13 / 34
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Augmented Virtual Inputs Vector

Writing the virtual inputs in vector form:[
vx(t)
vθ(t)

]
︸ ︷︷ ︸

v(t)

=

[
Mx
Mθ

]
︸ ︷︷ ︸

M

[
F(t)
M(t)

]
︸ ︷︷ ︸

u(t)

We refer to v(t) ∈ R∑q∈{x,θ} mq = R2 as the augmented virtual
inputs vector of the equivalent decomposed system
The augmented virtual inputs vector of the satisfies:

v(t) = Mu(t)

14 / 34



Introduction
Motivating Example

System Model
System Virtual Decomposition
Differential Game
Nash Equilibrium
Simulation

Augmented Virtual Inputs Vector

Writing the virtual inputs in vector form:[
vx(t)
vθ(t)

]
︸ ︷︷ ︸

v(t)

=

[
Mx
Mθ

]
︸ ︷︷ ︸

M

[
F(t)
M(t)

]
︸ ︷︷ ︸

u(t)

We refer to v(t) ∈ R∑q∈{x,θ} mq = R2 as the augmented virtual
inputs vector of the equivalent decomposed system

The augmented virtual inputs vector of the satisfies:

v(t) = Mu(t)

14 / 34



Introduction
Motivating Example

System Model
System Virtual Decomposition
Differential Game
Nash Equilibrium
Simulation

Augmented Virtual Inputs Vector

Writing the virtual inputs in vector form:[
vx(t)
vθ(t)

]
︸ ︷︷ ︸

v(t)

=

[
Mx
Mθ

]
︸ ︷︷ ︸

M

[
F(t)
M(t)

]
︸ ︷︷ ︸

u(t)

We refer to v(t) ∈ R∑q∈{x,θ} mq = R2 as the augmented virtual
inputs vector of the equivalent decomposed system
The augmented virtual inputs vector of the satisfies:

v(t) = Mu(t)

14 / 34



Introduction
Motivating Example

System Model
System Virtual Decomposition
Differential Game
Nash Equilibrium
Simulation

Virtual Controller Design

We refer to M ∈ Rm×∑q∈{x,θ} mq = R2×2 as the augmented
division matrix of the aforementioned virtual decomposition2

We can now compute a controller with regards to v(t), then
roll back to u(t), under the condition that M is invertible, in
which case we refer to the system as Inversely Designable or ID

It can be shown that for any values of mc, mp and L, the
modified inverted pendulum is always ID

2Notice each decomposition induces a (possibly) different value for M
15 / 34
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Virtual Controller Design

Our approach is more easy to implement when the system is
ID, meaning defining v(t) guarantees a unique value for u(t)

In the case where the system is not ID, then u(t):
Either has no solution that satisfies v(t) = Mu(t)
Or it has infinitely many solutions

In the first case, a designer must choose a different value for M

In the second case, any value of u(t) satisfying v(t) = Mu(t)
will suffice3

3A solution to v(t) = Mu(t) when M is singular can be found using
numerical methods, such as computing the psuedoinverse of M

16 / 34
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Equivalent Decomposed System

Using v(t), we get an equivalent decomposed system of the form:

ẋ(t) = Ax(t) +


0
0
1
0


︸︷︷︸

Bx

vx(t) +


0
0
0
1


︸︷︷︸

Bθ

vθ(t)

which satisfies:

Bu(t) = Bxvx(t) + Bθvθ(t) = ∑
q∈{x,θ}

Bqvq(t)

17 / 34
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Differential Game

By designating appropriate cost functionals, the decomposed
system induces a set of differential games

In each game, the players are the functions that define the
virtual actuators

(
vq(·)

)
q∈{x,θ}, that compete by minimizing

their own respective assigned virtual cost functional

We compute a Nash Equilibrium that balances between the
objectives thus obtaining a set of optimal virtual inputs, as
described in detail in this study

18 / 34
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Virtual Cost Functionals

For q ∈ {x, θ}, let us consider infinite horizon quadratic cost
functionals of the following form:

Jq

(
vx(·), vθ(·)

)
:=

∫ ∞

0

[
x̃(τ)TQqx̃(τ) + ṽT

q (τ)rqṽq(τ)
]
dτ

where:
x̃(τ) := x∞ − x(τ) is the vector state error for any τ ∈ R≥0

Qq ∈ Rn×n = R4×4 are semi-positive definite state weights
ṽq(·) := vq∞ − vq(·) where vq∞ is the input law required to
maintain x∞, as in: limτ→∞ vq(τ) = vq∞ , and
ẋ∞ = 0 = Ax∞ + ∑ψ∈{x,θ} Bψvq∞

rq ∈ Rmq×mq = R are positive virtual input weights

19 / 34



Introduction
Motivating Example

System Model
System Virtual Decomposition
Differential Game
Nash Equilibrium
Simulation

Virtual Cost Functionals

For q ∈ {x, θ}, let us consider infinite horizon quadratic cost
functionals of the following form:

Jq

(
vx(·), vθ(·)

)
:=

∫ ∞

0

[
x̃(τ)TQqx̃(τ) + ṽT
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Open-Loop Nash Equilibrium

For the modified inverted pendulum, a pair of virtual inputs(
v∗q(·)

)
q∈{x,θ} constitutes an Open-Loop Nash Equilibrium if for all

q ∈ {x, θ} it is not possible to decrease the value of the cost

functional Jq

(
vx(·), vθ(·)

)
only by changing its corresponding

chosen virtual input v∗q(·) to some other input vq(·), while leaving
vψ(·) intact, when ψ ̸= q
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Open-Loop Nash Equilibrium

Formally, the pair
(
v∗q(·)

)
q∈{x,θ} satisfies:

∀vx(·) ; Jx

(
v∗x(·), v∗θ (·)

)
≤ Jx

(
vx(·), v∗θ (·)

)
;

∀vθ(·) ; Jθ

(
v∗x(·), v∗θ (·)

)
≤ Jθ

(
v∗x(·), vθ(·)

)

where for all q ∈ {x, θ}, equality for Jq is obtained only when
vq(·) ≡ v∗q(·)
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Nash Equilibrium Solution

This study shows the Open-Loop Nash Equilibrium problem is
solved by closed-loop constant feedback control policies(
v∗q(·)

)
q∈{x,θ} of the following form:

v∗q(·) := −K∗
q x∗(t)

where:
K∗

q ∈ Rmq×n = R1×4 is a constant controller with respect to
time defined as: K∗

q := 1
rq

BT
q P∗

q

x∗(t) is a game optimal state trajectory
P∗

q ∈ Rn×n = R4×4 is a constituent of a positive-definite
solution to a set of equations arising from the problem
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Nash Equilibrium Solution

More specifically:

1 x∗(t) is a game optimal state trajectory with regards to the
Nash Equilibrium optimal control problem described, i.e. it is a
solution to the model of the decomposed system when
assigned with the Nash Equilibrium optimal policies(
v∗q(·)

)
q∈{x,θ}, so for all t ∈ R≥0 it satisfies:

ẋ∗(t) = Ax∗(t) + ∑
ψ∈{x,θ}

Bψv∗ψ(t)
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ẋ∗(t) = Ax∗(t) + ∑
ψ∈{x,θ}

Bψv∗ψ(t)

23 / 34



Introduction
Motivating Example

System Model
System Virtual Decomposition
Differential Game
Nash Equilibrium
Simulation

2 The matrices (P∗
q)q∈{x,θ} are the unique positive-definite

solution4 to the Game Continuous Algebraic Riccati Equations
(GCAREs):

∀q ∈ {x, θ} ; PqAcl + AT
clPq + Qq +

1
rq

PqBqBT
q Pq = 0

with Acl := A − ∑ψ∈{x,θ}
1
rψ

BψBT
ψPψ

4In the study we show:

If the set of GCAREs has a finite amount of solutions, then it is of
order O(2N), with N being the number of objectives, and thus in
this case O(22) = O(4)
A solution that stabilizes the closed loop dynamics is one where
each matrix Pq is positive-definite, and a unique such solution exists
under certain conditions of detectability and stabilizability
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Simulation Overview

We will now present numerical simulation results for the
system to illustrate the method effectiveness

The simulation was conducted using a Python package we
developed for the purpose of implementing the general method
this motivating example is a private case of

The Package is called PyDiffGame5, is fully covered in this
study and can be found with extensive documentation at

https://github.com/krichelj/PyDiffGame

5The package has awarded the ’Starstruck’ achievement due to it being a
’repository that has many stars’
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Simulation

We will compare the results of our method with those of a
regular Linear Quadratic Regulator (LQR) for the continuous
infinite horizon case
The infinite horizon LQR cost functional is of the following
form:

JLQR (u(·)) :=
∫ ∞

0

[
x̃(τ)TQLQRx̃(τ) + ũT(τ)RLQRũ(τ)

]
dτ

where:
QLQR ∈ R4×4 is the LQR state weight matrix with Q ≥ 0
RLQR ∈ R2×2 is the LQR input weight matrix with R > 0
ũ(·) := u∞ − u(·) where u∞ is the input required to maintain
x∞, as in: limτ→∞ u(τ) = u∞, and Ax∞ + Bu∞ = 0
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Simulation Game State Weights

Consider the following state weight matrices for Jx and Jθ:

Qx := q


1 0 2 0
0 0 0 0
2 0 4 0
0 0 0 0

 ; Qθ := q


0 0 0 0
0 1 0 2
0 0 0 0
0 2 0 4


for some q ∈ R+
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Simulation Game State Weights

For ψ ∈ {x, θ}:

One can see Qψ affects only ψ(t) and ψ̇(t)

The multiset of eigenvalues of Qψ, i.e. its spectrum is
σ(Qψ) = {5q, 0, 0, 0} with an algebraic multiplicity of 3 for 0

Since all these eigenvalues λ ∈ σ(Qψ) satisfy λ ≥ 0, Qψ is
positive semi-definite6

This setting for the weight matrices assures that each
objective weights its associated state variables, while
accounting more for the velocity, to reduce fluctuations

6A well-known theorem elaborated on in this study

28 / 34
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LQR State Weights

Let the LQR weight matrix then be the sum of Qx and Qθ

i.e.:

QLQR := Qx + Qθ = q


1 0 2 0
0 1 0 2
2 0 4 0
0 2 0 4



The multiset of eigenvalues of QLQR is
σ(QLQR) = {5q, 5q, 0, 0} with an algebraic multiplicity of 2 for
0 and 5q

This setting for the LQR weight matrix accounts for
attempting to capture the weighting considerations of both Qx
and Qθ
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Input Weights

Consider the following values for the input weights:

rx = rθ := r

for some r ∈ R+

Correspondingly, let:

RLQR := r
[

1 0
0 1

]
which is of course positive definite

This setting along with that of the state weights allows us to
set r := 1 and then just consider a value for q
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Agnostic Costs

We will compare between LQR and PyDiffGame by comparing the
following expressions for both instances:

Jagnostic :=
∫ ∞

0

[
||x̃(τ)||2 + ||ũ(τ)||2

]
dτ
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Simulation Hyperparameters Values

Let us consider the following simulation code:

from itertools import product

epsilon = 10 ** (-3)
x_Ts = [10 ** p for p in [1, 2]]
theta_Ts = [pi / 2 + t for t in [pi / 2, pi / 4]]
m_cs = [10 ** p for p in [1, 2]]
m_ps = [10 ** p for p in [0, 1, 2]]
p_Ls = [10 ** p for p in [1, 2]]
qs = [10 ** p for p in [-4, -3, -2, -1, 0, 1]]
params = [x_Ts, theta_Ts, m_cs, m_ps, p_Ls, qs]
all_combos = list(product(*params))

There are 288 combinations, each inducing a differential game
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Simulation Code

wins = []

for (x_T, theta_0, m_c, m_p, p_L, q) in all_combos:
x_T = np.array([x_T, theta_0, 0, 0])
x_0 = np.zeros_like(x_T)
inverted_pendulum_comparison = \

InvertedPendulumComparison(m_c=m_c, m_p=m_p, p_L=p_L, q=q,
x_0=x_0, x_T=x_T, epsilon=epsilon)

is_max_lqr = \
inverted_pendulum_comparison(plot_state_spaces=False,

run_animations=False,
print_costs=True,
non_linear_costs=True,
agnostic_costs=True)

wins += [int(is_max_lqr)]

wins = np.array(wins)
print(wins.sum() / len(wins) * 100)
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Simulation Results

We achieved success in 167/288 games which is 57.986
percent of all the games played
Our method is best when the number of objectives increases
In such case weighting of the overall system becomes more
difficult
As the results show, even for this simple case where N = 2, in
about half of the cases individual weighting incurred overall
less effort
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