
Composition of Dynamic Control Objectives
Based on Differential Games

Joshua Shay Kricheli, Aviran Sadon, Shai Arogeti,
Shimon Regev, and Gera Weiss

Ben Gurion University of the Negev
MED 29th Mediterranean Conference on Control and Automation

June 22-25 2021
Bari, Puglia, Italy

1 / 20



Introduction

I We present a controller design that uses game theory as a
mechanism for composing controllers

I This design allows to easily handle multiple, possibly
conflicting, dynamically changing objectives

I The simplicity is in the independent specification of each
objective from which the final overall controller is formed

2 / 20



Introduction

I We present a controller design that uses game theory as a
mechanism for composing controllers

I This design allows to easily handle multiple, possibly
conflicting, dynamically changing objectives

I The simplicity is in the independent specification of each
objective from which the final overall controller is formed

2 / 20



Introduction

I We present a controller design that uses game theory as a
mechanism for composing controllers

I This design allows to easily handle multiple, possibly
conflicting, dynamically changing objectives

I The simplicity is in the independent specification of each
objective from which the final overall controller is formed

2 / 20



Method Overview

We propose to apply the following steps repeatedly:

1. Assign a ‘virtual input’ to each objective

2. Define a differential game where each player controls an input
and tries to achieve the corresponding objective

3. Compute a Nash equilibrium and use it to construct a
controller that balances between the objectives

3 / 20



Method Overview

We propose to apply the following steps repeatedly:

1. Assign a ‘virtual input’ to each objective

2. Define a differential game where each player controls an input
and tries to achieve the corresponding objective

3. Compute a Nash equilibrium and use it to construct a
controller that balances between the objectives

3 / 20



Method Overview

We propose to apply the following steps repeatedly:

1. Assign a ‘virtual input’ to each objective

2. Define a differential game where each player controls an input
and tries to achieve the corresponding objective

3. Compute a Nash equilibrium and use it to construct a
controller that balances between the objectives

3 / 20



Virtual Inputs

I We propose a method to transform a linear time-invariant
(LTI) system of the form:

ẋ(t) = Ax(t) + Bu(t)

I To an equivalent system:
ẋ(t) = Ax(t)+

N

∑
i=1

Bivi(t)

I Each vi is called a virtual input
designed s.t. each input affects mostly one of the objectives

I For nonlinear systems, we use on-the-fly linearization around
each state using linear parameter varying (LPV) models

decomposition
of the input

4 / 20



Virtual Inputs

I We propose a method to transform a linear time-invariant
(LTI) system of the form:

ẋ(t) = Ax(t) + Bu(t)

I To an equivalent system:
ẋ(t) = Ax(t)+

N

∑
i=1

Bivi(t)

I Each vi is called a virtual input
designed s.t. each input affects mostly one of the objectives

I For nonlinear systems, we use on-the-fly linearization around
each state using linear parameter varying (LPV) models

decomposition
of the input

4 / 20



Virtual Inputs

I We propose a method to transform a linear time-invariant
(LTI) system of the form:

ẋ(t) = Ax(t) + Bu(t)

I To an equivalent system:
ẋ(t) = Ax(t)+

N

∑
i=1

Bivi(t)

I Each vi is called a virtual input
designed s.t. each input affects mostly one of the objectives

I For nonlinear systems, we use on-the-fly linearization around
each state using linear parameter varying (LPV) models

decomposition
of the input

4 / 20



Cost Functions

I For a system of the form:

ẋ(t) = Ax(t) +
N

∑
i=1

Bivi(t)

I Each virtual input is associated with objective defined as an
independent cost function of the form:

Ji =
∫ ∞

0

[
x(t)TQix(t) +

N

∑
j=1

vj(t)TRijvj(t)
]
dt

where each Qi specifies the cost of deviations from the zero
state and Rij specifies control costs

5 / 20



Cost Functions

I For a system of the form:

ẋ(t) = Ax(t) +
N

∑
i=1

Bivi(t)

I Each virtual input is associated with objective defined as an
independent cost function of the form:

Ji =
∫ ∞

0

[
x(t)TQix(t) +

N

∑
j=1

vj(t)TRijvj(t)
]
dt

where each Qi specifies the cost of deviations from the zero
state and Rij specifies control costs

5 / 20



Movie

6 / 20



Nash Equilibrium

I We consider the feedback control policies (v∗1 , v∗2 , . . . , v∗N)
where v∗i maps the state to the i’th virtual input

I Such a tuple constitutes a Nash Equilibrium iff for all
1 ≤ i ≤ N and any policy vi we have:

Ji(v∗1 , . . . , v∗i , . . . , v∗N) ≤ Ji(v∗1 , . . . , v∗i , . . . , v∗N)

I We propose to construct the actual input using the virtual
inputs satisfying the Nash equilibrium

I This generates a control strategy that forms a dynamic
balance between the objectives

replacing v∗i by vi does not improve Ji

7 / 20



Nash Equilibrium

I We consider the feedback control policies (v∗1 , v∗2 , . . . , v∗N)
where v∗i maps the state to the i’th virtual input

I Such a tuple constitutes a Nash Equilibrium iff for all
1 ≤ i ≤ N and any policy vi we have:

Ji(v∗1 , . . . , v∗i , . . . , v∗N) ≤ Ji(v∗1 , . . . , v∗i , . . . , v∗N)

I We propose to construct the actual input using the virtual
inputs satisfying the Nash equilibrium

I This generates a control strategy that forms a dynamic
balance between the objectives

replacing v∗i by vi does not improve Ji

7 / 20



Nash Equilibrium

I We consider the feedback control policies (v∗1 , v∗2 , . . . , v∗N)
where v∗i maps the state to the i’th virtual input

I Such a tuple constitutes a Nash Equilibrium iff for all
1 ≤ i ≤ N and any policy vi we have:

Ji(v∗1 , . . . , v∗i , . . . , v∗N) ≤ Ji(v∗1 , . . . , v∗i , . . . , v∗N)

I We propose to construct the actual input using the virtual
inputs satisfying the Nash equilibrium

I This generates a control strategy that forms a dynamic
balance between the objectives

replacing v∗i by vi does not improve Ji

7 / 20



Calculating the Nash Equilibrium

I For the Nash Equilibrium, we consider linear feedback
controllers of the form:1

v∗i (x(t)) = −Kix(t) = −R−1
ii BT

i Pix(t)

I where {Pi}N
i=1 is a solution of the Ricatti equations:

0 = PiAc + AT
c Pi + Qi +

N

∑
j=1

PjBjR−T
jj RijR−1

jj BT
j Pj

I and where:

Ac = A−
N

∑
i=1

BiR−1
ii BT

i Pi

1Vassilis L. Syrmos Frank L. Lewis Draguna L. Vrabie. “Optimal Control”.
In: chap. 10, pp. 438–460.

8 / 20



Calculating the Nash Equilibrium

I For the Nash Equilibrium, we consider linear feedback
controllers of the form:1

v∗i (x(t)) = −Kix(t) = −R−1
ii BT

i Pix(t)

I where {Pi}N
i=1 is a solution of the Ricatti equations:

0 = PiAc + AT
c Pi + Qi +

N

∑
j=1

PjBjR−T
jj RijR−1

jj BT
j Pj

I and where:

Ac = A−
N

∑
i=1

BiR−1
ii BT

i Pi

1Frank L. Lewis, “Optimal Control”.
8 / 20



Quadrotor Example Use Case

I For demonstration, we implemented a quadrotor controller

I A quadrotor is a well studied non-linear system with six
degrees of freedom

I We use a simulation of a quadrotor in an indoor environment
based on a work previously done by our team2

I We implement two levels of control:
1. Orientation control based on inertial sensors
2. Positional control based on coordinates of the lines of a

corridor

I We simulate the corresponding image that the quadrotor is
presumably witnessing according to the given current state

2Amir Shapiro Hanoch Efraim Shai Arogeti and Gera Weiss. “Vision Based
Output Feedback Control of Micro Aerial Vehicles in Indoor Environments”. In:
(2017).

9 / 20



Quadrotor Example Use Case

I For demonstration, we implemented a quadrotor controller

I A quadrotor is a well studied non-linear system with six
degrees of freedom

I We use a simulation of a quadrotor in an indoor environment
based on a work previously done by our team2

I We implement two levels of control:
1. Orientation control based on inertial sensors
2. Positional control based on coordinates of the lines of a

corridor

I We simulate the corresponding image that the quadrotor is
presumably witnessing according to the given current state

2Hanoch Efraim and Weiss, “Vision Based Output Feedback Control of
Micro Aerial Vehicles in Indoor Environments”.

9 / 20



Quadrotor Example Use Case

I For demonstration, we implemented a quadrotor controller

I A quadrotor is a well studied non-linear system with six
degrees of freedom

I We use a simulation of a quadrotor in an indoor environment
based on a work previously done by our team2

I We implement two levels of control:
1. Orientation control based on inertial sensors
2. Positional control based on coordinates of the lines of a

corridor

I We simulate the corresponding image that the quadrotor is
presumably witnessing according to the given current state

2Hanoch Efraim and Weiss, “Vision Based Output Feedback Control of
Micro Aerial Vehicles in Indoor Environments”.

9 / 20



Quadrotor Example Use Case

I For demonstration, we implemented a quadrotor controller

I A quadrotor is a well studied non-linear system with six
degrees of freedom

I We use a simulation of a quadrotor in an indoor environment
based on a work previously done by our team2

I We implement two levels of control:
1. Orientation control based on inertial sensors
2. Positional control based on coordinates of the lines of a

corridor

I We simulate the corresponding image that the quadrotor is
presumably witnessing according to the given current state

2Hanoch Efraim and Weiss, “Vision Based Output Feedback Control of
Micro Aerial Vehicles in Indoor Environments”.

9 / 20



Quadrotor Example Use Case

I For demonstration, we implemented a quadrotor controller

I A quadrotor is a well studied non-linear system with six
degrees of freedom

I We use a simulation of a quadrotor in an indoor environment
based on a work previously done by our team2

I We implement two levels of control:
1. Orientation control based on inertial sensors
2. Positional control based on coordinates of the lines of a

corridor

I We simulate the corresponding image that the quadrotor is
presumably witnessing according to the given current state

2Hanoch Efraim and Weiss, “Vision Based Output Feedback Control of
Micro Aerial Vehicles in Indoor Environments”.

9 / 20



Quadrotor Objectives

We define two control objectives:

1. The first objective is stabilizing the quadrotor at the center of
the corridor, facing forward

2. The second one is a dynamic objective on the forward velocity,
where the objective changes with the distance of the quadrotor
to the wall
I If the quadrotor is closer to the center than the wall, then the

objective is to reach a (positive) constant velocity
I Otherwise, the objective is to decrease the velocity to zero

There might be a conflict between these two objectives, thus
finding a balance between them is beneficial

10 / 20



Quadrotor Objectives

We define two control objectives:
1. The first objective is stabilizing the quadrotor at the center of

the corridor, facing forward

2. The second one is a dynamic objective on the forward velocity,
where the objective changes with the distance of the quadrotor
to the wall
I If the quadrotor is closer to the center than the wall, then the

objective is to reach a (positive) constant velocity
I Otherwise, the objective is to decrease the velocity to zero

There might be a conflict between these two objectives, thus
finding a balance between them is beneficial

10 / 20



Quadrotor Objectives

We define two control objectives:
1. The first objective is stabilizing the quadrotor at the center of

the corridor, facing forward

2. The second one is a dynamic objective on the forward velocity,
where the objective changes with the distance of the quadrotor
to the wall

I If the quadrotor is closer to the center than the wall, then the
objective is to reach a (positive) constant velocity

I Otherwise, the objective is to decrease the velocity to zero

There might be a conflict between these two objectives, thus
finding a balance between them is beneficial

10 / 20



Quadrotor Objectives

We define two control objectives:
1. The first objective is stabilizing the quadrotor at the center of

the corridor, facing forward

2. The second one is a dynamic objective on the forward velocity,
where the objective changes with the distance of the quadrotor
to the wall
I If the quadrotor is closer to the center than the wall, then the

objective is to reach a (positive) constant velocity

I Otherwise, the objective is to decrease the velocity to zero

There might be a conflict between these two objectives, thus
finding a balance between them is beneficial

10 / 20



Quadrotor Objectives

We define two control objectives:
1. The first objective is stabilizing the quadrotor at the center of

the corridor, facing forward

2. The second one is a dynamic objective on the forward velocity,
where the objective changes with the distance of the quadrotor
to the wall
I If the quadrotor is closer to the center than the wall, then the

objective is to reach a (positive) constant velocity
I Otherwise, the objective is to decrease the velocity to zero

There might be a conflict between these two objectives, thus
finding a balance between them is beneficial

10 / 20



Quadrotor Control

I Let us consider the state vector of the quadrotor:

x =
[
φ φ̇ θ θ̇ ψ ψ̇ z ż x ẋ y ẏ

]T

I The quadrotor is controlled by applying desired torques using
its motors

I The torques are generated by controlling the angular velocity
of each motor

I Let us define the following input vector for the thrust and
three torques along the axes:

u =
[
T τx τy τz

]T

11 / 20



Quadrotor Model

We consider the following rigid-body non-linear model3 (assuming
small angles, symmetry and diagonal inertia matrix):

ẋ = f (x, u) =



φ̇
Iyy−Izz

Ixx
θ̇ψ̇ + Jr

Ixx
θ̇Ωr +

l
Ixx

τx

θ̇
Izz−Ixx

Iyy
φ̇ψ̇ − Jr

Iyy
φ̇Ωr +

l
Iyy

τy

ψ̇
Ixx−Iyy

Izz
θ̇φ̇ + 1

Izz
τz

ż
g− 1

m cosφ cos θ T
ẋ

1
m (cos φ sin θ cos ψ + sin φ sin ψ)T

ẏ
1
m (cos φ sin θ sin ψ− sin φ cos ψ)T


3Samir Bouabdallah. “Design and Control of Quadrotors with Application

to Autonomous Flying”. In: (2007).
12 / 20



Simulation Tactics I

I We show the performance of the suggested methodology in
the context of the quadrotor hierarchical control strategy

I The method uses an image-based visual servoing to control
micro aerial vehicles (MAVs) in indoor environments

I We assume the state of the system is obtained by a
linearization of the model proposed earlier

I Then we simulate the corresponding image that the quadrotor
is presumably witnessing according to that state

13 / 20



Simulation Tactics I

I We show the performance of the suggested methodology in
the context of the quadrotor hierarchical control strategy

I The method uses an image-based visual servoing to control
micro aerial vehicles (MAVs) in indoor environments

I We assume the state of the system is obtained by a
linearization of the model proposed earlier

I Then we simulate the corresponding image that the quadrotor
is presumably witnessing according to that state

13 / 20



Simulation Tactics I

I We show the performance of the suggested methodology in
the context of the quadrotor hierarchical control strategy

I The method uses an image-based visual servoing to control
micro aerial vehicles (MAVs) in indoor environments

I We assume the state of the system is obtained by a
linearization of the model proposed earlier

I Then we simulate the corresponding image that the quadrotor
is presumably witnessing according to that state

13 / 20



Simulation Tactics I

I We show the performance of the suggested methodology in
the context of the quadrotor hierarchical control strategy

I The method uses an image-based visual servoing to control
micro aerial vehicles (MAVs) in indoor environments

I We assume the state of the system is obtained by a
linearization of the model proposed earlier

I Then we simulate the corresponding image that the quadrotor
is presumably witnessing according to that state

13 / 20



Simulation Tactics II

The following is a high-level representation of the simulated system:

14 / 20



Simulation Tactics III

1. The state x is obtained by solving ẋ = f (x, u)

2. This state is fed into the image simulator that produces the
current corresponding approximated positions and angles

3. Then the high-level controller produces the desired thrust and
angular rates

4. Finally, the low-level controller produces the actual thrust and
torques, u, to be applied to the quadrotor

15 / 20



Simulation Tactics III

1. The state x is obtained by solving ẋ = f (x, u)

2. This state is fed into the image simulator that produces the
current corresponding approximated positions and angles

3. Then the high-level controller produces the desired thrust and
angular rates

4. Finally, the low-level controller produces the actual thrust and
torques, u, to be applied to the quadrotor

15 / 20



Simulation Tactics III

1. The state x is obtained by solving ẋ = f (x, u)

2. This state is fed into the image simulator that produces the
current corresponding approximated positions and angles

3. Then the high-level controller produces the desired thrust and
angular rates

4. Finally, the low-level controller produces the actual thrust and
torques, u, to be applied to the quadrotor

15 / 20



Simulation Tactics III

1. The state x is obtained by solving ẋ = f (x, u)

2. This state is fed into the image simulator that produces the
current corresponding approximated positions and angles

3. Then the high-level controller produces the desired thrust and
angular rates

4. Finally, the low-level controller produces the actual thrust and
torques, u, to be applied to the quadrotor

15 / 20



Results I - Objectives Dynamics

The following figure displays the simulation results. Once the wall
measure reaches 0.5 - the velocity starts to increase from 0 to 3:

16 / 20



Results II - Angular State Variables

The following figure displays the angles and angular velocities

17 / 20



Conclusions

I We saw our method provides an easy way of finding a plausible
balance in between possibly conflicting objectives

I Our simulation provides a quick stabilization of the state
variables, even after changes in the interaction

I Handling non-linear systems with multiple objectives can be
made quite easy by this method

18 / 20



Python Package

I We designed a Python package that encapsulates the method
described

I The package provides a quick way to define objectives and
generates the corresponding dynamic differential games

I Then the algorithm solves these games on-the-fly and
generates the state variables

I The package is called PyDiffGame and is detailed extensively
in the article

PyDiffGame

git clone https://github.com/krichelj/PyDiffGame.git

Thank you for listening!
19 / 20



Acknowledgments

This research was supported in part by:
I The Helmsley Charitable Trust through the Agricultural,

Biological and Cognitive Robotics Initiative at Ben-Gurion
University of the Negev

I The Marcus Endowment Fund at Ben-Gurion University of the
Negev

I The Israeli Smart Transportation Research Center (ISTRC)

20 / 20


	Introduction
	Virtual Inputs
	Cost Functions

	Nash Equilibrium
	Calculating the Nash Equilibrium

	Quadrotor Example Use Case
	Quadrotor Objectives
	Quadrotor Control
	Quadrotor Model
	Simulation Tactics
	Simulation Results

	Conclusions
	Python Package
	Acknowledgments

