
Quantum Computing HW3

Nir Stiassnie and Shay Kricheli

June 2020

Question 1 - Convolution Theorem

Let us recall the convolution of two vectors e, f ∈ CN as:

(e ∗ f)j =
1√
N

N−1∑
i=0

eif(j−i)(modN)

We also defined the Fourier Transform of a vector v ∈ CN as v̂, where:

v̂ =
1√
N

N−1∑
j=0

ωijNvj

We are to prove the convolution theorem:

Claim 1. For any e, f ∈ CN :

(̂e ∗ f)r = êr · f̂r

Proof. Let us start with the left hand side (̂e ∗ f)i:

(̂e ∗ f)r =
1√
N

N−1∑
j=0

ωrjN (e ∗ f)j =

1√
N

N−1∑
j=0

ωrjN
1√
N

N−1∑
k=0

ekf(j−k)(modN) =
1

N

N−1∑
j=0

N−1∑
k=0

ωrjN ekf(j−k)(modN) =

1

N

N−1∑
j=0

N−1∑
k=0

ωrj+rk−rkN ekf(j−k)(modN) =
1

N

N−1∑
k=0

ωrkN ek

N−1∑
j=0

ω
r(j−k)
N f(j−k)(modN) =

1

N

N−1∑
k=0

ωrkN ek

N−1∑
j=0

(
ω
(j−k)
N

)r
f(j−k)(modN) =

1

N

N−1∑
k=0

ωrkN ek

N−1∑
j=0

(
e2πi

j−k
N

)r
f(j−k)(modN) =

1

N

N−1∑
k=0

ωrkN ek

N−1∑
j=0

(
e2πi

(j−k)(modN)
N

)r
f(j−k)(modN) =

1

N

N−1∑
k=0

ωrkN ek

N−1∑
j=0

(
ω
(j−k)(modN)
N

)r
f(j−k)(modN) =

1

N

N−1∑
k=0

ωrkN ek

N−1∑
j=0

ω
r(j−k)(modN)
N f(j−k)(modN) =

1√
N

N−1∑
k=0

ωrkN ek
1√
N

N−1∑
j=0

ωrjN fj =

êr · f̂r

where the addition of the modN term in the power is due to the periodic property of the sin and
cos functions that compose eiθ with period of 2π, as seen in class and the last transition is with a
change of index of the form j ← (j−k)(modN) and realizing each index iterates over the whole range.

1

Question 2 - Order finding and Factoring

Let us consider Z∗21 and let us denote it as described in class:

Z∗21 = 〈G21, ·mod21〉

Z∗21 is the group with a set of all natural numbers between 1 and 20 who are co-prime with 21, and
·mod21 is the binary operation of multiplication modulo 21. Formally:

G21 = {k ∈ [1, 20] | gcd(21, k) = 1} ; ∀a, b ∈ G21 : a ·mod21 b = a · b mod21

Let us write out G21 explicitly:

G21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}

One can see that 1 is the neutral element in Z∗21 with regards to the defined operation. For each
element x ∈ G21, let us consider the following table as required:

x rx = ord21(x) is rx even and is xrx/2 6= −1 mod21
1 1 no
2 6 yes
4 3 no
5 6 no
8 2 yes
10 6 yes
11 6 yes
13 2 yes
16 3 no
17 6 no
19 6 yes
20 2 no

For elements x ∈ G21 that satisfy rx is even and xrx/2 6= −1 mod21:

x xrx/2 gcd(xrx/2 − 1, 21) gcd(xrx/2 + 1, 21)
2 8 7 3
8 8 7 3
10 13 3 7
11 8 7 3
13 13 3 7
19 13 3 7

One can see that |G21| = ϕ(21) = 12 (where ϕ(n) is Euler’s totient function - a function that
exactly counts the number of elements in Z∗n). The second table shows there are exactly 6 elements
x ∈ G21 that satisfy that rx is even and xrx/2 6= −1 mod21. Thus:

Pr(r is even and xrx/2 6= −1 mod21) =
6

12
=

1

2

with accordance to what we saw in class.

2

Question 3 - Hadamard Transform over a Subspace

Let A ⊂ Fn2 be a subspace and let us define a new operator � for x, y ∈ Fn2 :

� : Fn2 × Fn2 → {0, 1}

x� y =
(n−1∑
i=0

xiyi

)
modN

We are to show that:

H⊗n
1√
|A|

∑
x∈A
|x〉 =

1√
|A⊥|

∑
y∈A⊥

|y〉

where: A⊥ = {y ∈ Fn2 | ∀x ∈ A,
∑n
i=1 xiyi = 0 mod2} Let us start with the LHS:

H⊗n
1√
|A|

∑
x∈A
|x〉 =

1√
|A|

∑
x∈A

H⊗n|x〉 =
1√
|A|

∑
x∈A

∑
y∈Fn2

(−1)x�y√
2n

|y〉 =

1√
2n
√
|A|

∑
x∈A

∑
y∈Fn2

(−1)x�y|y〉 =
1√

2n
√
|A|

∑
y∈Fn2

∑
x∈A

(−1)x�y|y〉 =

1√
2n
√
|A|

(∑
y∈Fn2 \A⊥

∑
x∈A

(−1)x�y|y〉+
∑
y∈A⊥

∑
x∈A

(−1)x�y|y〉
)

At this point, we would like the expression
∑
y∈Fn2 \A⊥

∑
x∈A(−1)x�y|y〉 to be summed up to zero. In

order to do so, let us define the transformation Ty for y ∈ Fn2 as follows:

Ty : A→ {0, 1}

Ty(x) = x� y =
(n−1∑
i=0

xiyi

)
modN

Lemma 1. Ty is a linear transformation

Proof. We will show additivity and homogeneity of Ty:

• For v, u ∈ A , Ty(v + u) = Ty(v) + Ty(u)

Ty(v + u) = y � (v + u) =(n−1∑
i=0

yi(v + u)i

)
modN =

(n−1∑
i=0

yivi + yiui

)
modN =

(n−1∑
i=0

yivi

)
modN +

(n−1∑
i=0

yiui

)
modN = Ty(v + u) = Ty(v) + Ty(u)

• For v ∈ F2 and α ∈ F, Ty(αv) = αTy(v)

Ty(αv) = y � αv =
(n−1∑
i=0

yiαvi

)
modN = α

(n−1∑
i=0

yivi

)
modN = αTy(v)

3

Now, we would like to show that for each y ∈ Fn2 \ A⊥,
∑
x∈A(−1)x�y|y〉 = 0, in order to do so

we will use Ty and the Rank–Nullity theorem. So, let y ∈ Fn2 \ A⊥ and Ty to be the corresponding
transformation as defined above. Since y /∈ A⊥, there exists x ∈ A such that y� x = 1. We will show
that for half of the elements in A it holds that x� y = 0 and for the other half it holds that x� y = 1
and thus the resulting expression will sum up to zero as required. Let us recall the Rank-Nullity
theorem:

Theorem 1. For any two vector spaces U, V and a linear transformation T : U → V :

dim(Ker(T)) + dim(Im(T)) = dim(U)

Applying the theorem for Ty and A:

dim(Ker(Ty)) + dim(Im(Ty)) = dim(A)

Since dim(Im(Ty)) = dim({0, 1}) = 1:

dim(Ker(Ty)) + 1 = dim(A)

Since, A ⊆ Fn2 , then |A| = 2dim(A) and so on for every vector space or subspace in Fn2 :

2dim(Ker(Ty))+1 = 2dim(A)

2|Ker(Ty)| = |A|

|Ker(Ty)| = |A|
2

Let us observe that:
Ker(Ty) = {x ∈ A | Ty(x) = y � x = 0}

A \Ker(Ty) = {x ∈ A | Ty(x) = y � x = 1}

and since |Ker(Ty)| = |A|
2

|Ker(Ty)| = |A \Ker(Ty)| = |A|
2

Now let us observe that:∑
y∈Fn2 \A⊥

∑
x∈A

(−1)x�y|y〉 =
∑

y∈Fn2 \A⊥

(∑
x∈Ax�y=0

(−1)x�y|y〉+
∑
x∈A
x�y=1

(−1)x�y|y〉
)

=

∑
y∈Fn2 \A⊥

(∑
x∈A
x�y=0

(−1)x�y +
∑
x∈A
x�y=1

(−1)x�y
)
|y〉 =

∑
y∈Fn2 \A⊥

(∑
x∈A
x�y=0

1−
∑
x∈A
x�y=1

1
)
|y〉 =

∑
y∈Fn2 \A⊥

(
|Ker(Ty)| − |A \Ker(Ty)|

)
=

∑
y∈Fn2 \A⊥

0 = 0

And recall that:

H⊗n
1√
|A|

∑
x∈A
|x〉 =

1√
2n
√
|A|

(∑
y∈Fn2 \A⊥

∑
x∈A

(−1)x�y|y〉+
∑
y∈A⊥

∑
x∈A

(−1)x�y|y〉
)

=
1√

2n
√
|A|

∑
y∈A⊥

∑
x∈A

(−1)x�y|y〉 =
1√

2n
√
|A|

∑
y∈A⊥

∑
x∈A
|y〉 =

1√
2n
√
|A|

∑
x∈A

∑
y∈A⊥

|y〉 =
|A|√

2n
√
|A|

∑
y∈A⊥

|y〉 =

√
|A|√
2n

∑
y∈A⊥

|y〉

4

Lemma 2. For A and A⊥ as defined above, |A⊥| = 2n

|A|

Proof. Let denote B to be the basis of A and k to be its dimension, then:

B = {b0, b1, ..., bk−1}

let us define matrix T ⊆ Fn×n2 that the first k rows are the elements of B, and the rest n− k rows are
zeros:

T =

b0
b1
...

bk−1
0 · · · 0

...
0 · · · 0

From Rank–Nullity theorem:

dim(Fn2) = dim(Ker(T)) +Rank(T)

n = dim(Ker(T)) + k

2n = 2dim(Ker(T))+k = 2dim(Ker(T))2k = 2dim(Ker(T))|A|
2n

|A|
= 2dim(Ker(T))

Now we will show that ker(T) = A⊥ with bidirectional containment:

• ker(T) ⊆ A⊥
Let x ∈ Ker(T), so by Ker(T) definition, Tx = 0. Since the multiplication of the first rows
of T which are the elements of B, the basis of A, with x, results in zeros, it holds that for any
y ∈ A, yTx = 0 = x� y. Thus, x ∈ A⊥

• A⊥ ⊆ ker(T)
Let x ∈ A⊥, so by A⊥ definition, for any y ∈ A, x� y = 0, and specifically for the elements of
the basis, which are in the first k rows of T . Thus, Tx = 0 and x ∈ Ker(T).

So:
2n

|A|
= 2dim(Ker(T)) = 2dim(A⊥) = |A⊥|

For conclusion:

H⊗n
1√
|A|

∑
x∈A
|x〉 =

√
|A|√
2n

∑
y∈A⊥

|y〉 =
1√
2n

|A|

∑
y∈A⊥

|y〉 =
1√
|A⊥

∑
y∈A⊥

|y〉

5

Question 4 - Addition by Using Quantum Fourier Transform

Let us consider a system of n ∈ N qubits and let N = 2n. Let us denote |x〉 as a basis vector of an
n-qubits system, as in a 2n = N dimensional vector. Instead of writing out x as a binary string of
length n, let us consider x as a decimal number in the range 0 ≤ x ≤ N − 1 such that each number
represents a different basis vector; i.e. 0 stands for 0n, 1 stands for 0n−11, 2 represents 0n−210 and so
forth.

4.1

In this section we are to implement the following phase shift as a circuit:

|x〉 → e
2πix
N |x〉

One can express x in the following manner:

x =
n−1∑
k=0

xn−k2k

where x1, ..., xn ∈ {0, 1}. Thus:

x

N
=

x

2n
=

n−1∑
k=0

xn−k2k−n =

n−1∑
k=0

xn−k
2n−k

=

n∑
k=1

xk
2k

where the last transition is by a change of summation index and adding the terms in reversed order.
Thus we have that the state |x〉 can be expressed in terms of x1, ..., xn in the following manner:

|x〉 = |x1x2...xn−1xn〉 = |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn−1〉 ⊗ |xn〉 =

n⊗
j=1

|xj〉

For each xj ∈ {0, 1} such that 0 ≤ j ≤ n− 1 let us define a corresponding gate by the transformation
Tj using the one-qubit phase shift gate with the parameter θ = 2π

2j :

Tj = U 2π

2j
=

[
1 0

0 e
2πi

2j

]
For all θ, Uθ is unitary since its columns form an orthonormal basis of C2 with respect to the usual
inner product. Thus Tj is unitary.

Lemma 3. Let xj ∈ {0, 1} such that 0 ≤ j ≤ n− 1. Then Tj |xj〉 = e
2πi

2j
xj |xj〉.

Proof. Let us apply Tj on |xj〉. If xj = 0:

Tj |xj〉 = Tj |0〉 = U 2π

2j
|0〉 =

[
1 0

0 e
2πi

2j

] [
1
0

]
=

[
1
0

]
= |0〉 = e

2πi

2j
·0|0〉

If xj = 1:

Tj |xj〉 = Tj |1〉 = U 2π

2j
|1〉 =

[
1 0

0 e
2πi
N

] [
0
1

]
=

[
0

e
2πi

2j

]
= e

2πi

2j |1〉 = e
2πi

2j
·1|1〉

6

Using that, let us define:

T =

n⊗
j=1

Tj = T1 ⊗ T2 ⊗ · · · ⊗ Tn−1 ⊗ Tn

This gate is of course unitary, as it is composed of n unitary gates.

Claim 2. Let 0 ≤ x ≤ N − 1. Then T |x〉 = e2πi
x
N |x〉

Proof. By properties of the Kronecker product, the above representation of x and the above lemma
we have:

T |x〉 =

n⊗
j=1

Tj

n⊗
j=1

|xj〉 =(
T1 ⊗ T2 ⊗ · · · ⊗ Tn−1 ⊗ Tn

)(
|x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn−1〉 ⊗ |xn〉

)
=

n⊗
j=1

Tj |xj〉 =

n⊗
j=1

e
2πi

2j
xj |xj〉 =

n∏
j=1

e
2πi

2j
xj

n⊗
j=1

|xj〉 = e2πi
∑n
j=1

xj

2j |x〉 =

e2πi
x
N |x〉

4.2

In this section we are to implement the transformation as a circuit:

|x〉 → |x+ 1(modN)〉

Using the transformation T defined in the last section, let us observe the following circuit:

Claim 3. Let FN be the Quantum Fourier Transform over ZN . Let us define ψ = F †NTFN and let
0 ≤ x ≤ N − 1. Then ψ is unitary and ψ|x〉 = |x+ 1(modN)〉.

Proof.

Lemma 4. For all unitary matrices U, V ∈ Ck×k, the matrix UV is also unitary.

Proof. Let U, V ∈ Ck×k be two unitary matrices. Since they’re unitary, we have:

UU† = Ik×k ; V V † = Ik×k

Thus:
UV (UV)† = UV V †U† = UIk×kU

† = UU† = Ik×k

By the lemma and the definition of ψ we have that ψ is unitary. To prove the second part, let us
consider each transition in ψ:

7

1. We first start out with our vector |x〉 that we apply a QFT to. Thus, by the definition of QFT
as we saw in class:

FN |x〉 =
1√
N

N−1∑
y=0

e2πi
xy
N |y〉

2. After the QFT, we apply the transformation T on the result and get (by the claim proven about
the transformation T):

TFN |x〉 = T
1√
N

N−1∑
y=0

e2πi
xy
N |y〉 =

1√
N

N−1∑
y=0

e2πi
xy
N T |y〉 =

1√
N

N−1∑
y=0

e2πi
xy
N e2πi

y
N |y〉 =

1√
N

N−1∑
y=0

e2πi
(x+1)y
N |y〉 =

1√
N

N−1∑
y=0

(
e2πi

(x+1)
N

)y
|y〉 =

1√
N

N−1∑
y=0

(
e2πi

(x+1)(modN)
N

)y
|y〉 =

1√
N

N−1∑
y=0

e2πi
(x+1)(modN)

N y|y〉

where the penultimate transition is due to the periodic property of the sin and cos functions
that compose eiθ with period of 2π, as seen in class.

3. Finally we apply the inverse QFT and get (by definition) ψ:

F †NTFN |x〉 = ψ|x〉 = F †N
1√
N

n−1∑
y=0

e2πi
(x+1)(modN)

N y|y〉 = |x+ 1(modN)〉

8

Question 5 - A different Fourier Transform

Let us consider a system of n ∈ N qutrits and let N = 3n. In this question we are to consider the
Fourier Transform over the group Z3n = ZN and design a quantum circuit that works with qutrits
and computes their Fourier Transform.
For one qutrit, let us consider the Quantum Fourier Transform in the case for N = 3. By the definition
we saw in class, the element j, k for 0 ≤ j ≤ k ≤ 2 of the Fourier Transform transformation matrix
will be in this case:

(F3)j,k =
1√
3
e

2πi
3 jk =

1√
3
e

2πi
3 jk

Let us write this matrix out explicitly:

F3 =
1√
3

1 1 1

1 e
2πi
3s e

4πi
3s

1 e
4πi
3s e

8πi
3s

Using the same notation used in question 4, let 0 ≤ x ≤ N − 1 and let us consider its equivalent
representation:

x =

n−1∑
k=0

xn−k3k

x1, ..., xn ∈ {0, 1, 2}. Let us consider the application of FN on |x〉 as we already saw in question 4,
and its equivalent form using the Kronecker product representation which we saw in class. In each
element in the product, let us consider a linear combination of three basis vectors (|0〉, |1〉, |2〉) instead
of the usual two for qubits:

FN |x〉 = FN |x1x2...xn−1xn〉 =

1√
N

N−1∑
y=0

e2πi
xy
N |y〉 =

1√
N

n⊗
l=1

(2∑
kl=0

e
2πi

3l
xkl |kl〉

)
=

1√
N

n⊗
l=1

(
|0〉+ e

2πi

3l
x|1〉+ e

4πi

3l
x|2〉

)
Thus let us construct an augmented version of the Rs gate for qutrits which we will denote as Rsqutrit :

Rsqutrit =

1 0 0

0 e
2πi
3s 0

0 0 0e
4πi
3s

Then, we construct a circuit similar to that seen in class, but instead of applying Hadamard (which
is the Fourier Transform for the case in which N = 2) initially for each qutrit, we first apply F3 as
defined above and then apply the augmented Rsqutrit sequentially similar to what was seen in class.

9

So finally let us observe the following circuit for the Fourier Transform for qutrits:

Not shown in the figure is the coefficient of 1√
3

for conciseness. Moreover, as also seen in class,

after applying this circuit, the qutrits are then reversed

10

Question 6 - Shor’s Code

Let |ψ〉 = 1√
8
(|000〉 + |111〉)⊗3. Let us observe that this expression is exactly the 9-qubit Shor

codeword for the original state |0〉. Let us suppose the first qubit of the state is measured. We are
first to calculate the two possible states after the measurement was performed, assuming no errors
occur other than the measurement itself.
Let us observe that each element in |ψ〉 starts with a block of either three zeros or three ones. Thus,
when measuring the first qubit - we immediately know what the second and third qubits are. Thus,
let us consider the two possible results of the measurement. If a 0 was measured:

|ψ0〉 =
1

2
|000〉 ⊗ (|000〉+ |111〉)⊗2

and if a 1 was measured:

|ψ1〉 =
1

2
|111〉 ⊗ (|000〉+ |111〉)⊗2

Now we are to calculate what happens in each step of the error correcting procedure. Let us consider
the protocol for Shor’s quantum error-correction as seen in class by its steps:

1. Bit-flip error-correction
Bit-flip error-correction as seen in class guarantees error-correction for up to one bit flip. It uses
auxiliary qubits to determine which qubit has flipped in each triplet block and produces a 2-bit
syndrome with the index of the flipped qubit. Then it applies the X quantum gate upon it to
flip it back.
In the case discussed here, every triplet block in each element of |ψ0〉 and |ψ1〉 is composed of
exactly three zeros or three ones either way, because no errors occur other than the measurement.
Thus, all the syndromes of all the triplet blocks for both cases will be measured to 00 and thus
no X gates will be applied and in either case, the state will remain the same. Thus the error-
correcting procedure in this case will yield the state after the measurement, as in |ψ0〉 and |ψ1〉.
In the final stage of the Bit-flip error-correction, the protocol decodes the states back from the
block triplets to single qubits and thus at this stage the states will be:

|ψ0〉 =
1

2
|0〉 ⊗ (|0〉+ |1〉)⊗2 =

1√
2

(|+〉+ |−〉)⊗ |+〉 ⊗ |+〉

|ψ1〉 =
1

2
|1〉 ⊗ (|0〉+ |1〉)⊗2 =

1√
2

(|+〉 − |−〉)⊗ |+〉 ⊗ |+〉

2. Phase-flip error-correction
The phase-flip error correction is applied, as seen in class in the {|+〉, |−〉} basis. We can write
the states as follows:

|ψ0〉 =
1√
2

(|+ + +〉+ |−+ +〉)

|ψ1〉 =
1√
2

(|+ + +〉 − |−+ +〉)

Using the auxiliary qubits (that are initialized to |00〉, the states will be:

|ψ0〉 =
1√
2

(|+ + +〉+ |−+ +〉)|00〉

|ψ1〉 =
1√
2

(|+ + +〉 − |−+ +〉)|00〉

After applying the phase-flip correction protocol, the states will be:

|ψ0〉 =
1√
2

(|+ + +〉|00〉+ |−+ +〉|01〉)

|ψ1〉 =
1√
2

(|+ + +〉|00〉 − |−+ +〉|01〉)

11

Now the protocol measures the auxiliary qubit of each element. If the result is 0 - it does not
perform a phase-flip correction because there is no error. If the result is other than 0 - it performs
a bit correction error using the quantum Z gate on the qubit with the index corresponding to the
measurement result. We can see that in both cases - the protocol will produce a final corrected
result. Thus the states at this point will be:

|ψ0〉 = |+ + +〉
|ψ1〉 = |+ + +〉

In the final stage of the Phase-flip error-correction, the protocol decodes the states back from
the block triplets to single qubits and thus at this stage the states will be:

|ψ0〉 = |+〉
|ψ1〉 = |+〉

3. Decode Phase
In the final stage of the protocol, we decode the states back to the standard basis using the
Hadamard transform and get the final results of:

|ψ0〉 = |0〉
|ψ1〉 = |0〉

Now, let us recall that the original codeword was the codeword for the original state |0〉 and
thus the protocol will produce the correct result in either case.

12

