
Quantum Computing HW2

Nir Stiassnie and Shay Kricheli

May 2020

Question 1 - Multiple qubits and quantum circuits

In this question, for each state |x0, x1〉, for xi ∈ {0, 1}, we are to apply the circuit given. Let us apply
each operation individually.

• Let x0 = 0, x1 = 0. Let us apply the circuit on |0, 0〉. Let us first apply the Hadamard gate:

H ⊗H|0, 0〉 = |+,+〉 =
1√
2

(
|0〉+ |1〉

)
⊗ 1√

2

(
|0〉+ |1〉

)
=

1

2

(
|0, 0〉+ |0, 1〉+ |1, 0〉+ |1, 1〉

)
Now let us apply the CNOT gate:

CNOT |+,+〉 = CNOT
1

2

(
|0, 0〉+ |0, 1〉+ |1, 0〉+ |1, 1〉

)
=

1

2

(
CNOT |0, 0〉+ CNOT |0, 1〉+ CNOT |1, 0〉+ CNOT |1, 1〉

)
=

1

2

(
|0, 0〉+ |0, 1〉+ |1, 0〉+ |1, 1〉

)
= |+,+〉

Finally let us apply the Hadamard gate again:

H ⊗H|+,+〉 = |0, 0〉

• Let x0 = 0, x1 = 1. Let us apply the circuit on |0, 1〉. Let us first apply the Hadamard gate:

H ⊗H|0, 1〉 = |+,−〉 =
1√
2

(
|0〉+ |1〉

)
⊗ 1√

2

(
|0〉 − |1〉

)
=

1

2

(
|0, 0〉 − |0, 1〉+ |1, 0〉 − |1, 1〉

)
Now let us apply the CNOT gate:

CNOT |+,−〉 = CNOT
1

2

(
|0, 0〉 − |0, 1〉+ |1, 0〉 − |1, 1〉

)
=

1

2

(
CNOT |0, 0〉 − CNOT |0, 1〉+ CNOT |1, 0〉 − CNOT |1, 1〉

)
=

1

2

(
|0, 0〉 − |0, 1〉+ |1, 1〉 − |1, 0〉

)
=

1

2

(
|0〉 ⊗

(
|0〉 − |1〉

)
− |1〉 ⊗

(
|0〉 − |1〉

)
=

1√
2

(
|0〉 − |1〉

)
⊗ 1√

2

(
|0〉 − |1〉

)
= |−〉 ⊗ |−〉 = |−,−〉

Finally let us apply the Hadamard gate again:

H ⊗H|−,−〉 = |1, 1〉

1



• Let x0 = 1, x1 = 0. Let us apply the circuit on |1, 0〉. Let us first apply the Hadamard gate:

H ⊗H|1, 0〉 = |−,+〉 =
1√
2

(
|0〉 − |1〉

)
⊗ 1√

2

(
|0〉+ |1〉

)
=

1

2

(
|0, 0〉+ |0, 1〉 − |1, 0〉 − |1, 1〉

)
Now let us apply the CNOT gate:

CNOT |−,+〉 = CNOT
1

2

(
|0, 0〉+ |0, 1〉 − |1, 0〉 − |1, 1〉

)
=

1

2

(
CNOT |0, 0〉+ CNOT |0, 1〉 − CNOT |1, 0〉 − CNOT |1, 1〉

)
=

1

2

(
|0, 0〉+ |0, 1〉 − |1, 0〉 − |1, 1〉

)
= |−,+〉

Finally let us apply the Hadamard gate again:

H ⊗H|−,+〉 = |1, 0〉

• Let x0 = 1, x1 = 1. Let us apply the circuit on |1, 1〉. Let us first apply the Hadamard gate:

H ⊗H|1, 1〉 = |−,−〉 =
1√
2

(
|0〉 − |1〉

)
⊗ 1√

2

(
|0〉 − |1〉

)
=

1

2

(
|0, 0〉 − |0, 1〉 − |1, 0〉+ |1, 1〉

)
Now let us apply the CNOT gate:

CNOT |−,−〉 = CNOT
1

2

(
|0, 0〉 − |0, 1〉 − |1, 0〉+ |1, 1〉

)
=

1

2

(
CNOT |0, 0〉 − CNOT |0, 1〉 − CNOT |1, 0〉+ CNOT |1, 1〉

)
=

1

2

(
|0, 0〉 − |0, 1〉+ |1, 0〉 − |1, 1〉

)
= |+,−〉

Finally let us apply the Hadamard gate again:

H ⊗H|+,−〉 = |0, 1〉

Now let us repeat the calculation with the second circuit. Let us define:

CNOTT |a, b〉 := |a⊕ b, b〉

Now:

• Let x0 = 0, x1 = 0. Let us apply the circuit on |0, 0〉.

CNOTT |0, 0〉 = |0⊕ 0, 0〉 = |0, 0〉

• Let x0 = 0, x1 = 1. Let us apply the circuit on |0, 1〉.

CNOTT |0, 1〉 = |0⊕ 1, 1〉 = |1, 1〉

• Let x0 = 1, x1 = 0. Let us apply the circuit on |1, 0〉.

CNOTT |1, 0〉 = |1⊕ 0, 0〉 = |1, 0〉

• Let x0 = 1, x1 = 1. Let us apply the circuit on |1, 1〉.

CNOTT |1, 1〉 = |1⊕ 1, 1〉 = |0, 1〉

2



Let us compare the results of applying the first circuit with the regular CNOT and the second
one with CNOTT :

First Circuit Second Circuit
|0, 0〉 |0, 0〉 |0, 0〉
|0, 1〉 |1, 1〉 |1, 1〉
|1, 0〉 |1, 0〉 |1, 0〉
|1, 1〉 |0, 1〉 |0, 1〉

Table 1: Circuits Results Comparison

We can see that both unitary transformations produce the same results and thus they are equal.
Moreover, we can see that the CNOT operation does not necessarily retain the control qubit - as it
changes for the states |+,+〉 and |−,−〉.

3



Question 2 - Do We Really Need Complex Numbers?

We are asked to prove that all amplitudes in a quantum computation are real numbers. In order to do
so, we will show that any quantum circuit on n qubits that uses T two-qubit gates can be simulated
exactly by a quantum circuit on n+ 1 qubits, that uses at most T three-qubit gates. Let us provide
an appropriate construction.
Remark: The question is about an operation of two-qubit gates on states that are composed of n
qubits. In order to do so, in each step - two qubits on which the apply the gate are chosen and the rest
remain the same. Mathematically - this operation is done by using tensor product of n − 2 identity
matrices and the appropriate gate respective to the desired indices. We will discuss the general case
in which the gates acts upon n qubits each time for simplification.
Let 1 ≤ t ≤ T and let us denote the state of circuit C at step t as:

|ψt〉 =
∑

x∈{0,1}n
(axt

+ ibxt
)|x〉

In order to represent |ψt〉 with no complex amplitudes, we will use an extra qubit as an indicator to
indicate whether we use the real or imaginary part of each qubit, as follows:

|ψ′t〉 =
∑

x∈{0,1}n
(axt
|0x〉+ bxt

|1x〉)

Claim 1. Let C be a quantum circuit on n qubits that uses T two-qubit gates. Let us define C ′ to
be a quantum circuit on n + 1 qubits that uses T three-qubit gates. Then C can be simulated exactly
by C ′ - as in for each step 1 ≤ t ≤ T - there exists a gate VUt

at step t of circuit C ′ works in an
equivalent way to the gate Ut at step t of circuit C and the probabilities for all base states |x〉 where
x ∈ {0, 1}n are the same for the complex state |ψt〉 and the real state |ψ′t〉.

Proof. To prove the main claim, let us state several lemmas:

Lemma 1. |ψt〉 and |ψ′t〉 are equivalent representations i.e the probability of measuring |x〉 for all
x ∈ {0, 1}n in both of them is equal

Proof. We know that the probability to measure |x〉 in |ψt〉 is the squared absolute value of the
coefficient of |x〉, so:

P (|x〉) = |ax + ibx|2 = a2 + b2

In order to compute the probability to measure |x〉 in |ψ′t〉 let us observe the coefficients of |0x〉 and
|1x〉, and since they are independent events:

P ′(|x〉) = P ′(|0x〉) + P ′(|1x〉) = a2 + b2 = P (|x〉)

Let us now show the construction of the gates of C ′ based on the gates of C. Let us denote
U = (A + iB) as a two-qubit gate as in circuit C (where for two qubits U ∈ C4×4, A,B ∈ R4×4 and
for the general case of n qubits - U ∈ C2n×2n , A,B ∈ R2n×2n) and define a new three-qubit gate VU :

VU =

[
A −B
B A

]
∈ R8×8

Lemma 2. If U ∈ C4×4 is a unitary matrix, than VU ∈ R8×8 is an orthonormal matrix and therefore
- a quantum gate.

4



Proof. In order to show that VU is an orthonormal matrix, we will show that VUV
>
U = I. Let us

observe:

V >U =

[
A> B>

−B> A>

]
VUV

>
U =

[
AA> +BB> AB> −BA>
BA> −AB> AA> +BB>

]
Since U is a unitary matrix, UU† = I4×4 and thus:

UU† = (A+ iB)(A+ iB)† = (A+ iB)(A> − iB>) = AA> + i(BA> −AB>) +BB> = I4×4

Since, I, A and B are real matrices, the coefficient of i in the equation above must be 0:

BA> −AB> = 04×4

Than also:
(BA> −AB>)> = AB> −BA> = 04×4

So,
AA> +BB> = I4×4

And we have that:

VUV
>
U =

[
AA> +BB> AB> −BA>
BA> −AB> AA> +BB>

]
=

[
I4×4 04×4
04×4 I4×4

]
= I8×8

From both lemmas we have that VU is a valid quantum gate and the probabilities are the same
between the original state and our construction. Let us go on with the proof of the main claim, which
we will do using induction on the steps t.

• Induction base:
The input to a quantum circuit is in the standard basis and so, in the base of our induction,
we know that the state has only real amplitudes. Thus, let us denote the initial state and gate
(respectively) as:

|ψ1〉 =
∑
x

ax1
|x〉 ; U1 = A1 + iB1

where U1 ∈ C4×4, A1, B1 ∈ R4×4. Let us recall that applying a gate matrix on a vector is done
by: Thus after applying the gate U1 on |ψ1〉 we have the next state |ψ2〉:

|ψ2〉 = U1|ψ1〉 = (A1 + iB1)
∑
x

ax1
|x〉 =

∑
x

ax1
(A1 + iB1)|x〉 =

∑
x

(
ax1

A1 + iax1
B1

)
|x〉 =

∑
x

(
ax1

A1|x〉+ iax1
B1|x〉

)
Let ax2

, bx2
∈ R be two scalars that result by operating ax1

A1 and ax1
B1 on |x〉, respectively,

so that they satisfy: ∑
x

ax1
A1|x〉 =

∑
x

ax2
|x〉∑

x

ax1B1|x〉 =
∑
x

bx2 |x〉

Thus: ∑
x

(
ax1

A1|x〉+ iax1
B1|x〉

)
=
∑
x

(ax2
+ ibx2

)|x〉

5



Let us observe that this pattern accommodate our construction. Let VU1
be the corresponding

gate to U1 by the construction in the circuit C ′:

VU1 =

[
A1 −B1

B1 A1

]
Since bx1

= 0 we have by the construction that the equivalent initial state is:

|ψ′1〉 =
∑
x

ax1 |0x〉

By our construction, we are to prove that |ψ′2〉 = VU1 |ψ′1〉 =
∑
x(ax2 |0x〉 + bx2 |1x〉). From the

first lemma we’ll have that Let:

|ψ′2〉 = VU1
|ψ′1〉 =

[
A1 −B1

B1 A1

]∑
x

ax1
|0x〉 =

∑
x

ax1

[
A1 −B1

B1 A1

]
|0x〉 =

∑
x

ax1

(
|0〉A1|x〉+ |1〉B1|x〉

)
=
∑
x

(
ax1
|0〉A1|x〉+ ax1

|1〉B1|x〉
)

=

∑
x

(
|0〉ax1A1|x〉+ |1〉ax1B1|x〉

)
Plugging in the values ax2 and bx2 we get:

|ψ′2〉 =
∑
x

(
|0〉ax2 |x〉+ |1〉bx2 |x〉

)
=
∑
x

(
ax2 |0x〉+ bx2 |1x〉

)
As required.

• Induction assumption:
Let t ∈ [1, T ]. Let us assume correctness for t. Let |ψt〉 =

∑
x∈{0,1}n(axt

+ ibxt
)|x〉 be the state

at step t in the circuit C. Let |ψ′t〉 be the state at step t in the circuit C ′. Then let us assume
that |ψ′t〉 =

∑
x∈{0,1}n(axt

|0x〉+ bxt
|1x〉).

• Induction step:
Let us prove correctness for t+ 1. Let Ut = At + iBt be the gate that operates at step t in the
circuit C. Then the state at step t+1 in the circuit C is: |ψt+1〉 = Ut|ψt〉 =

∑
x(axt+1

+ibxt+1
)|x〉.

Let VUt be the corresponding gate to Ut by the construction in the circuit C ′. We are to show
that |ψ′t+1〉 = VUt |ψ′t〉 =

∑
x(axt+1 |0x〉+ bxt+1 |1x〉).

Let us consider the state |ψt+1〉:

|ψt+1〉 = Ut|ψt〉 =
(
At + iBt

)∑
x

(axt + ibxt)|x〉 =
∑
x

(
At + iBt

)
(axt + ibxt)|x〉 =∑

x

[
axt

At − bxt
Bt + i

(
bxt
At + axt

Bt
)]
|x〉 =

∑
x

[(
axt

At − bxt
Bt
)
|x〉+ i

(
bxt
At + axt

Bt
)
|x〉
]

Let axt+1
, bxt+1

∈ R be two scalars that result by operating axt
At − bxt

Bt and bxt
At + axt

Bt on
|x〉, respectively, so that they satisfy:∑

x

(
axt

At − bxt
Bt
)
|x〉 =

∑
x

axt+1
|x〉∑

x

(
bxt
At + axt

Bt
)
|x〉 =

∑
x

bxt+1
|x〉

Thus: ∑
x

[(
axtAt − bxtBt

)
|x〉+ i

(
bxtAt + axtBt

)
|x〉
]

=
∑
x

(axt+1 + ibxt+1)|x〉

6



By the construction:

VUt =

[
At −Bt
Bt At

]
Thus by the induction assumption:

|ψ′t+1〉 = VUt
|ψ′t〉 =

[
At −Bt
Bt At

]∑
x

(axt
|0x〉+ bxt

|1x〉) =
∑
x

[
At −Bt
Bt At

]
(axt
|0x〉+ bxt

|1x〉)

∑
x

[
axt

[
At −Bt
Bt At

]
|0x〉+ bxt

[
At −Bt
Bt At

]
|1x〉

]
=

∑
x

[
axt

(
|0〉At + |1〉Bt

)
+ bxt

(
− |0〉Bt + |1〉At

)]
|x〉 =

∑
x

[
axt

(
|0〉At|x〉+ |1〉Bt|x〉

)
+ bxt

(
− |0〉Bt|x〉+ |1〉At|x〉

)]
=

∑
x

[(
|0〉axt

At|x〉+ |1〉axt
Bt|x〉

)
+

(
− |0〉bxt

Bt|x〉+ |1〉bxt
At|x〉

)]
=

∑
x

[
|0〉
(
axtAt − bxtBt

)
|x〉+ |1〉

(
axtBt + bxtAt

)
|x〉

]

Plugging in the values axt+1
and bxt+1

we get:

|ψ′t+1〉 =
∑
x

(
|0〉axt+1

|x〉+ |1〉bxt+1
|x〉
)

=
∑
x

(
axt+1

|0x〉+ bxt+1
|1x〉

)
This coclude the induction.

7



Question 3 - Grover’s Algorithm with an unknown number of
marked items

We are given an oracle with K marked items, and K is unknown. We are to design an algorithm that

finds a marked item using O
(√

N
K

)
queries, with probability of more than 1

2 .

(1)

We are to show that when K is known, there is an algorithm that finds the marked element with

probability close to 1, with a running time of O
(√

N
K

)
. To answer this question - we can use Grover’s

algorithm for the multiple marked items case as we saw in class: The algorithm receives an oracle to
a string of length N which we will denote as x = (x1, ..., xN ) where there are K characters that are 1
- which are called marked items and the rest are zeros. Let use define the set of all marked indices:

J = {i | xi = 1}

Moreover, let us define the following states:

|α〉 1√
N −K

∑
i∈{0,1}n\J

|i〉 ; |β〉 =
1√
K

∑
i∈J
|i〉 ;

Let us recall the oracle phase shift as seen in class:

Vx|i〉 = (−1)xi |i〉

Given N and K, let us define the algorithm which we will denote AKT
that receives a parameter T :

1. Let us define:

(a) The state |ψ0〉 = H⊗n|0n〉 = 1√
N

∑
i∈{0,1}n |i〉

(b) The operator that performs a reflection about |ψ0〉 as: Uψ0
= 2|ψ0〉〈ψ0| − I

2. Repeat for T iterations:

(a) Apply Vx

(b) Apply Uψ0

3. Perform a measurement of the qubits in the standard basis and return the result

Let us define the algorithm AK by running AKT
with T =

⌊
π
√

N
K

4 − 1
2

⌋
.

Claim 2. Given N and K, the algorithm AK returns an index of a marked item and runs in a

running time of O

(√
N
K

)
with a probability close to 1.

Proof. First of all, since T is finite, then AK halts. Let us show that for the value mentioned for T
- the algorithm will return an index of a marked item. As mentioned, the algorithm AK is exactly
Grover’s algorithm for K marked items (when K is known) as seen in class. Let us consider the
two-dimensional space S spanned by |α〉 and |β〉 and observe that |ψ0〉 lies somewhere between them
as mentioned. Let us assume that the state |ψ0〉 is with angle θ about the |α〉 axis. Let us observe

that: |ψ0〉 =
√

N−K
N |α〉+

√
K
N |β〉. Thus |ψ0〉 =

√
N−K
N |α〉+

√
K
N |β〉 = cos(θ)|α〉+ sin(θ)|β〉 and we

have that sin(θ) =
√

K
N . Using small angles approximation and assuming K � N , we can assume

8



that sin(θ) ≈ θ and thus θ ≈
√

K
N . We saw in class that in each iteration, the operations performed

result in a total rotation of 2θ towards the |β〉 axis. Let us observe that our goal is to reach |β〉 and
thus we’d want our final angle to be π

2 . Let us consider the state |ψt〉 after t iterations:

|ψt〉 = cos
(

(2t+ 1)θ
)
|α〉+ sin

(
(2t+ 1)θ

)
|β〉 ≈

cos
(

(2t+ 1)

√
K

N

)
|α〉+ sin

(
(2t+ 1)

√
K

N

)
|β〉

Now, for our condition to hold, let for t = T :

(2T + 1)

√
K

N
=
π

2

Thus, for us to return an index of a marked item we must have:

T =

π
√

N
K

4
− 1

2


And thus AK has performs O

(√
N
K

)
iterations and returns an index of a marked item with a prob-

ability close to 1.

(2)

We are to show that if K is unknown but lies between 2j to 2j+1 for a given j, there is an algorithm
that finds a marked element with a probability of at least 1

2 , with the same running time. To answer
this question, we will use the algorithm AKT

from the previous section, but with the largest value
that K can get in the given range. Let us denote with K the actual number of marked items in the
input.
Given N , and j let K ′ = 2j+1 and let us define the algorithm which we will denote AK′ by running

AKT
with T = TK′ =

⌊
π
√
N/K′

4 − 1
2

⌋
.

Claim 3. Given N and j such that 2j ≤ K ≤ 2j+1, the algorithm AK′ returns an index of a marked

item and runs in a running time of O

(√
N
K

)
with probability of at least 1/2.

Proof. First of all, since TK′ is finite - AK′ halts. Let us denote with T 1
2

the number of iterations

needed with AK′ to obtain a probability of success of exactly 1
2 with the required running time. Like

we did before, let us denote the angle between |ψ0〉 and |α〉 as θ and based on the same reasoning

as before, we have that sin(θ) =
√

K
N and once again using small angle approximation, we’ll have

θ ≈
√

K
N . Let us recall the expression we devised in the previous section for |ψt〉 and let us observe

that a probability of 1
2 is obtained if the squared absolute value of coefficient of |β〉 in |ψt〉 is equal to

1
2 . Since sin(π/4) = 1/

√
2 and (1/

√
2)2 = 1/2, the corresponding angle we end up with after running

the algorithm AK′ with T 1
2

iterations is π/4.

Lemma 3. Let us denote ϕ to be the final angle of |ψTK′ 〉 about the |α〉 axis when the algorithm AK′
is over. Then π

2 ≥ ϕ >
π
4 .

Proof. Let us break down the proof into the two bounds:

9



• Lower bound: By the expression for |ψt〉 we have that the total angle for t iterations increases
linearly with t. Thus in order to prove that ϕ > π

4 - it suffices to prove that TK′ > T 1
2
. As we

calculated before, we have:

TK′ =

⌊
π
√
N/K ′

4
− 1

2

⌋
Now let us calculate the value for T 1

2
. In order to do so, we’ll equate the angle after T 1

2
iterations

to π/4:

π/4 = (2T 1
2

+ 1)θ ≈ (2T 1
2

+ 1)
√
K/N

Solving for T 1
2
, we have:

T 1
2

=

⌊
1

2

π
√
N/K

4
− 1

2

⌋
Since K ′ = 2j+1 and 2j ≤ K ≤ 2j+1 we have that K ′ ≤ 2K. Thus:

TK′ =

⌊
π
√
N/K ′

4
− 1

2

⌋
≥

⌊
π
√
N/(2K)

4
− 1

2

⌋
=⌊

1√
2

π
√
N/K

4
− 1

2

⌋
>

⌊
1

2

π
√
N/K

4
− 1

2

⌋
= T 1

2

• Upper bound: Now, let us prove that ϕ ≤ π
2 . Let TK =

⌊
π
√

N
K

4 − 1
2

⌋
be the number of iterations

the algorithm AK′ runs using the actual unknown number K and let us denote ζ to be the final
angle when running the algorithm AK′ for TK iterations. By the reasoning we discussed earlier,
ζ is the closest we can get to the desired angle of π/2 and thus we assume ζ ≈ π/2. Thus it
suffices to prove that ϕ ≤ ζ. As mentioned, by the definition of |ψt〉, we have that the angle

after t iterations is (2t+ 1)
√

K
N . Since K ′ ≥ K, by the definition of TK′ and TK , we’ll have that

TK′ ≤ TK . Thus:

ϕ = (2TK′ + 1)

√
K

N
≤ (2TK + 1)

√
K

N
= ζ

Let us go back to the proof of the main claim. Let us recall that the probability of measuring a
state is the squared absolute value of its coefficient and let us recall that our goal is to get as close
as we can to |β〉 so when measuring |ψTK′ 〉 we’ll get a marked item. Using the definition of |ψt〉 we
have that the probability of measuring |β〉 by |ψTK′ 〉 is P|β〉 = | sin(ϕ)|2. Using the lemma and the
fact that in the interval [π/4, π/2], the function sin(x) is monotonically increasing:

1/2 = | sin(π/4)|2 ≥ | sin(ϕ)|2 ≥ | sin(π/2)|2 = 1

and thus:
1/2 ≥ P|β〉 ≥ 1

Moreover, we have that the total running time is O

(√
N
K′

)
. Since K ′ ≥ K we have that O

(√
N
K′

)
=

O

(√
N
K

)
as required.

10



(3)

In this section we are asked to iterate over the possible values of j in a certain order, to end up with a

total running time of O

(√
N
K

)
with probability 1/2. To do so, we’ll use the algorithm AK′ from the

previous section and with it iterate all the possible values of j from top to bottom. Since K < N
and AK′ always sets K ′ = 2j+1 for a given j, the maximal value j can have is blog(N)c − 1, so that’s
the initial value our new algorithm will start with for j.
Let us define the algorithm Aj :

1. Let us define:

(a) A boolean variable named found and initialize it with the value False

(b) An index j and initialize it with the value blog(N)− 1c

2. While found is False, perform:

(a) Run the algorithm AK′ with the current value of j, which will return the result of the
measurement as stated, which is an index that we will denote as r

(b) With the oracle, access x in the position r and denote it xr

(c) If xr = 1:

i. Set found to be True

else:

i. Set j to be j − 1

3. Return xr

Claim 4. Given N , the algorithm Aj returns a marked item with a running time of O

(√
N
K

)
with

a probability of 1/2.

Proof. To prove so, we’ll use several lemmas.

Lemma 4. Given N , the algorithm Aj halts and returns a marked item with a probability of at least
1/2.

Proof. Step 2.a of the algorithm Aj will result in a value of r which by the correctness proof for the
algorithm AK′ will be a marked item with a probability of at least 1/2. Thus in step 2.c we’ll have
that xr will be a marked item and thus equal to 1 - with a probability of at least 1/2. Thus the
algorithm Aj will halt and return a marked item with a probability of at least 1/2.

Lemma 5. Given N , the algorithm Aj has a running time of O

(√
N
K

)
with a probability of 1/2.

Proof. Let us perform a time-complexity analysis of Aj :

• Step 1 initializes variables and thus is done with 0(1) steps.

• Step 2.a uses the algorithm AK′ which we showed that runs for O

(√
N
K′

)
steps. We specifically

use the running time of O

(√
N
K′

)
for AK′ (as we showed in its correctness proof that it is a

tighter bound on its running time). Since for a given value of j we use K ′ = 2j+1 for AK′ , we
have that the running time of step 2.a is:

O

(√
N

K ′

)
= O

(√
N

2j+1

)

11



• Step 2.b uses the oracle access and thus is done in O(1) steps.

• Step 2.c assigns values to variables and thus is performed in O(1) steps.

• The while loop in step 2 is performed up until xr is a marked item. Let us evaluate the
value of j for which this happens with a probability of at least 1/2 - which we will denote
jF . By the correctness proof of AK′ , we have that for a given j such that 2j ≤ K ≤ 2j+1,
AK′ returns an index of a marked item with a probability of at least 1/2. Thus jF will have
to be such that 2jF ≤ K ≤ 2jF+1. So with a probability of at least 1/2 - the while loop in
step 2 of Aj will run up to the point where j = blog(K)c so that step 2.a will run AK′ with
K ′ = 2jF+1 = 2blog(K)c+1 ≈ 2K. Finally, we conclude that step 2 runs for values of j from
blog(N)c − 1 up to blog(K)c.

Thus the final running time of Aj is O(S) where:

S =

blog(N)c−1∑
j=blog(K)c

√
N

2j+1
=
√
N

blog(N)c−blog(K)c∑
j=1

1√
2j+blog(K)c

=

√
N

2blog(K)c

blog(N)c−blog(K)c∑
j=1

1√
2j

Let us observe that we result in a geometric series where the formula for its sum is:

p∑
j=1

qj =
1− qp−1

1− q

For S, we have q = 1√
2

and p = blog(N)c − blog(K)c and thus:

S =

√
N

2blog(K)c

1− 1√
2

blog(N)c−blog(K)c−1

1− 1√
2

=√
N

2blog(K)c

√
2√

2− 1

(
1− 2−

1
2

(
blog(N)c−blog(K)c−1

))
=√

N

2blog(K)c

√
2√

2− 1

(
1−
√

2 ·
(

2

(
blog(K)c−blog(N)c

)) 1
2

)
≈√

N

2log(K)

√
2√

2− 1

(
1−
√

2 ·
(

2

(
log(K)−log(N)

)) 1
2

)
=√

N

K

√
2√

2− 1

(
1−
√

2 ·
√
K

N

)
=

√
2√

2− 1

(√
N

K
−
√

2

)

And thus the final running time of Aj is O

(√
N
K

)
with a probability of at least a 1/2.

Both of these two lemmas form the proof of the main claim.

12



Question 4 - Lower Bound on quantum search with ancillary
qubits

In class we proved that a quantum algorithm for the search problem must apply Ω(
√
N) queries in

order to solve the search problem with high probability. We assumed that the algorithm does not use
any ancillary qubits. The goal of this exercise is to show that the same conclusion holds without this
assumption.

(1)

For t = 1, ..., T let |ψt〉 =
∑
i∈{0,1},z αi,z,t|i, z〉 the state after applying Ut · · ·U0 (which can be viewed

as the state at the t step of the algorithm, when the oracle is not applied, or, equivalently, that
there are no marked items). Here, z represents the ancillary qubits. Let pi = 1

T

∑
z,t |αi,z,t|2 be the

probability of measuring i at the leftmost qubit.

Claim 5. There exists an index i∗ such that pi∗ ≤ 1
N .

Proof. Since pi is an expression that represents the probability of measuring i at the leftmost qubit,
it must hold that: ∑

i∈{0,1}n
pi = 1

Thus, the minimal value of pi must be at most the value for an individual probability at the case of
uniform distribution. Let us observe that the number of possible values for i is 2n = N . Let:

i∗ = arg min
i∈0,1n

pi

Thus we have:
1

T

∑
z,t

|αi∗,z,t|2 = pi∗ ≤
1

N

(2)

Claim 6. It holds that:
∑T
t=1

√∑
z |αi∗,z,t|2 ≤

T√
N

.

Proof. Let us define a vector u ∈ RT using the index i∗ declared at the previous section, such that
for t = 1, ..., T :

ut =

√∑
z

|αi∗,z,t|2

and let us define v = (1, 1, ...1) ∈ RT . Let us consider the vectors’ norms:

||u|| =

√√√√ T∑
t=1

∑
z

|αi∗,z,t|2 ; ||v|| =

√√√√ T∑
t=1

12 =
√
T

Let us consider the inner product of the two vectors:

〈u, v〉 =

T∑
t=1

√∑
z

|αi∗,z,t|2

13



Let us recall Cauchy-Schwarz inequality for two vectors u, v of an inner product space:

|〈u, v〉| ≤ ||u|| · ||v||

Thus we have:

T∑
t=1

√∑
z

|αi∗,z,t|2 ≤

√√√√ T∑
t=1

∑
z

|αi∗,z,t|2 ·
√
T =

√∑
z,t

|αi∗,z,t|2 ·
√
T

From the result of the previous section we have:

1

T

∑
z,t

|αi∗,z,t|2 ≤
1

N
→
√∑

z,t

|αi∗,z,t|2 ≤
√
T

N

So using the last two inequalities:

T∑
t=1

√∑
z

|αi∗,z,t|2 ≤
√∑

z,t

|αi∗,z,t|2 ·
√
T ≤

√
T

N
·
√
T =

T√
N

And finally we have:
T∑
t=1

√∑
z

|αi∗,z,t|2 ≤
T√
N

Based on these two sections - we conclude that the addition of ancillary qubits does not change
the behaviour of the lower bound and thus we arrive at the expected realization that any quantum
algorithm for the search problem must apply Ω(

√
N) queries in order to solve the search problem with

high probability.

14


