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Introduction and Outline

Algorithm for solving linear equations [1]
Very common in engineering and science

Outline:
Problem formulation and definitions
Runtime comparison with classical algorithms, exponential
speedup
Algorithm sketch - concept and details
Runtime optimality
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Problem Formulation

Let:
A ∈ CN×N be an N ×N Hermitian matrix.
~b ∈ CN be a N -dimensional vector.

We would like to find a vector ~x satisfying:

A~x = ~b

If A is invertible there exists a unique solution which is given by:

~x = A−1~b

Cases in which A is not invertible will be discussed later on.
For now we will assume that A is invertible.
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Preliminary Definitions

Definition

Given s ∈ N, a matrix A ∈ CN×N is called s-sparse if each row of
A contains at most s non-zero entries.

For any N ×N matrix A: s = O(N).
In this algorithm, best performance is achieved when: s� N .
More specifically, when: s is poly(logN).
As in: ∃k ∈ N ; s = O(logkN).
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Definition

Given an Hermitian matrix A ∈ CN×N , the condition number of
A is given by:

κ =
|λmax|
|λmin|

where λmax and λmin are the maximal and minimal (by moduli)
eigenvalues of A respectively.

κ does not necessarily depend on N .
In this algorithm, best performance is achieved when: κ� N .
More specifically, when: κ is poly(logN).
κ grows → A closer to a singular matrix. Such a matrix is said
to be “ ill-conditioned”. If A is not invertible - κ =∞.
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Classical Algorithms Runtime

Solving the problem involves inverting A and multiplying the
result by ~b.
Theorem 28.1 in [2] states that the matrix multiplication
problem is not harder than the matrix inversion problem and
theorem 28.2 states vice versa.
Thus the runtime of the problem is proportional to that of
performing matrix inversion.
Inverting A can be done by performing Gaussian Elimination.
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For inverting a general matrix A:
Gaussian Elimination algorithm - runs in time O(N3).
There are minor improvements, up to about O(N2.373).
It is strongly conjured that a tight bound for the matrix
multiplication problem given two N ×N matrices is Θ(N2).
Thus the runtime of classical algorithms for matrix inversion is
polynomial with high certainty.
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Runtime Improvement Attempts

Assuming that A is s-sparse and with condition number κ:
Conjugate Gradient Descent - Runs in O(Nsκ).
With the assumptions on s and κ, we still get a runtime of
O(N logkN) for some k. At least polynomial in N .

Even if A is also positive semi-definite:
The runtime of Conjugate Gradient Descent reduces to
O(Ns

√
κ).

We still get a runtime of O(N logrN).
Positive semi-definiteness is an additional assumption the
quantum algorithm does not make.
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Quantum Algorithm Runtime

Can a quantum algorithm improve the dependence in N to be
better than polynomial time?
Even when the task is done - just reading out the solution
takes O(N) time.
Let |x〉 be a n-qubit quantum state (where n = logN)
corresponding of the values of ~x up to some error ε.
In cases where the desired outcome is not |x〉 itself, but some
specific set of functions of |x〉, the algorithm can perform
faster.
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Assuming A is s-sparse, for some measurement operator
M ∈ CN×N such that M ≥ 0, as in M is positive semi-definite:

The expression 〈x|M |x〉 can be calculated efficiently with
error ε - in poly(logN, s, κ, 1/ε) time.
More specifically, a runtime of O(κ2s2 logN/ε), where ε is the
error achieved in the output state |x〉.
This provides exponential improvement over the best known
classical algorithm - in terms of N .
The total exponential speedup is present where κ, s and 1/ε
are poly(logN).
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For example, let N = 1012 ≈ 240 (and when
κ, s, 1/ε = O(log(N)):

The runtime of the classical algorithm will be at least Ω(240).
The runtime of the quantum algorithm will be
poly(log(240)) = poly(40).
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Algorithm Idea

Given an Hermitian matrix A:
1 Start with a pre-determined initial state.
2 Performing phase estimation to approximate the the

eigenvalues of A.
3 Approximate the inverse of A by inverting its estimated

eigenvalues.
4 Use amplitude amplification to maximize the probability for

measuring the desired outcome.
5 Perform a measurement using M to estimate 〈x|M |x〉.
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The Non-Hermitian Case

As the algorithm assumes that A is Hermitian, if A is actually
not, then as a preprocess step, we define:

D =

[
0 A
A† 0

]
As D is Hermitian, using the algorithm we can now solve the
equation:

Dx̃ = b̃

for x̃, where:

x̃ =

[
0
~x

]
; b̃ =

[
~b
0

]
and then use ~x as explained.
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We want the quantum state |x〉 = A−1 |b〉.
We assumed A is invertible. Also Hermitian → it is normal.
Thus its eigenvectors { ~uj}Nj=1 corresponding to its eigenvalues
{λj}Nj=1 consist an orthonormal basis.

Let us denote the representation of |b〉 in that basis:

|b〉 =

N∑
k=1

βk |uk〉

Claim
The output state can represented as follows:

|x〉 =

N∑
j=1

λ−1j βj |uj〉
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Proof

By the spectral theorem f(A) =
∑N

j=1 f(λj) |uj〉 〈uj | and thus:
A−1 =

∑N
j=1 λ

−1
j |uj〉 〈uj |. We have:

|x〉 = A−1 |b〉 =

(
N∑
j=1

λ−1j |uj〉 〈uj |

)(
N∑
k=1

βk |uk〉

)

=

N∑
j=1

λ−1j βj |uj〉 〈uj |uj〉+

N∑
j=1

N∑
k=1
k 6=j

λ−1j βj |uj〉 〈uj |uk〉

=

N∑
j=1

λ−1j βj |uj〉

since { ~uj}Nj=1 consist an orthonormal basis. �
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Algorithm Outline

Input: Oracle access to the rows of an Hermitian matrix A, a
method to produce a unit vector |b〉 and a cutoff value for κ.

1 Represent ~b as a quantum state of the form:

|b〉 =
N∑
i=1

bi |i〉

where: bi = ~b[i].
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2 Next step - produce eigenvalues and eigenvectors of A.
I Using a simulation of a section of the phase estimation

algorithm.
I Simulate phase estimation C−U section with U = eiAt (which

is unitary) via a technique called Hamiltonian Simulation.
I The Fourier Transform is then applied.
I This results in a state proportional to:

N∑
j=1

βj |uj〉 |λj〉

I We now have produced the eigenvalues in the register.
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3 Next step - produce the inverse of the eigenvalues as a scalar.
Naive algorithm:
I Apply conditional rotation on ancilla qubit initialized to |0〉.
I Rotate conditioned on the eigenvalues of A - which are all real

since it is Hermitian.
I Let us define the rotation matrix:

R̃λj
=

√1− 1
λ2
j

− 1
λj

1
λj

√
1− 1

λ2
j


I But, R̃λj is not necessarily unitary.
I In the case where |λj | < 1, we get R̃λj R̃

†
λj
6= I.
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I This can be fixed using a normalization constant. Let:

Rλj
=

√1− C2

λ2
j

− C
λj

C
λj

√
1− C2

λ2
j


I Applying Rλj

to the ancilla qubit we get the form:

N∑
j=1

βj |uj〉 |λj〉

(√
1− C2

λ2j
|0〉+

C

λj
|1〉

)
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I Conditioned on measuring 1 in the ancilla qubit, we get a state
proportional to:

N∑
j=1

βj |uj〉 |λj〉 → C

N∑
j=1

λ−1j βj |uj〉 |λj〉

where C is a normalization constant.
I The whole transformation is non-unitary - involves

measurement and scaling by a factor 6≡ 1.
I Inverting the eigenvalues is the main challenge solved by the

suggested algorithm.
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4 Uncompute the |λj〉 register, resulting in a state proportional
to:

N∑
j=1

λ−1j βj |uj〉 = |x〉

where the equivalence is from the proven claim.
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Detailed Algorithm

Let us detail the algorithm operation:
1 Start with an n-qubit register |initial〉.
2 Produce the state |b〉. Assume there exists an efficiently

implementable unitary operator B such that:

B |initial〉 = |b〉 =

N∑
i=1

bi |i〉

possibly along with garbage in ancilla registers. For the
discussion of the algorithm, all the errors in B are neglected.
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3 Prepare the unitary operator eiAt.

Definition

A Hermitian s-sparse matrix A ∈ CN×N , is efficiently row
computable if it has at most s nonzero entries per row and given a
row index |i〉, the i’th row of A can be computed in time O(s).

I Assume A Hermitian, s-sparse and efficiently row computable.
I Thus we have an oracle access to the rows of A.
I For some time t ≥ 0 of the evolution, the unitary operator eiAt

can be calculated efficiently, as shown in [3].
I In time of approximately O(logNs2t).
I Combined with the assumption s� N , this is where the

sparsity of A is in fact used.
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Uinvert subroutine

Let us first assume A is well-conditioned.
Assume the state |ψ0〉 can be prepared efficiently, where:

|ψ0〉 =

√
2

T

T−1∑
τ=0

sinπ
(τ + 1

2

T

)
|τ〉

for some large T such that T = O(logNs2t).
|ψ0〉 are chosen to minimize a loss function of the error.
Runtime for this operation is poly(log(T/ε)).
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4 Define the subroutine of the algorithm Uinvert:
I Initiate a register of zeros noted by L. Prepare |ψ0〉 on register

L and adjoin it to |b〉, to result in:

|ψ0〉 ⊗ |b〉

For phase estimation, apply the next two steps:
I Apply conditional Hamiltonian evolution on |ψ0〉 ⊗ |b〉 with:

T−1∑
τ=0

|τ〉 〈τ | ⊗ eiAt0τ/T

for some chosen t0 such that t0 = O(κ/ε).
I Apply the Fourier transform to register L.
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After the Fourier transform, we end up with the state:

N∑
j=1

T−1∑
k=0

αk,jβj |k〉 |uj〉

where |k〉 are the Fourier basis states and |αk,j | is close to 1 if and
only if λj ≈ 2πk

t0
. Let λ̃k = 2πk

t0
. We can relabel the state to be:

N∑
j=1

T−1∑
k=0

αk,jβj |λ̃k〉 |uj〉
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To get λ̃k
−1

, apply the next non-unitary operation:
I Adjoin a register S in the state:

|h(λ̃k)〉 =

√
1− f(λ̃k)2 |0〉+ f(λ̃k) |1〉

where:
’0’ indicates that the desired matrix inversion hasn’t taken
place yet.
‘1’ indicates that it has.
f is called a filter function - used to produce the inverse of the
eigenvalues. They adhere certain conditions that we will
discuss later.
This is a generalization of what we saw earlier.

27 / 48



Introduction
The Quantum Algorithm

Optimality
Open Question

References

Quantum Algorithm Runtime
Algorithm Outline
Detailed Algorithm
Amplitude Amplification Illustration
Ill-Conditioned Case

We end up with the following state:

N∑
j=1

T−1∑
k=0

αk,jβj |λ̃k〉 |uj〉

(√
1− f(λ̃k)2 |0〉+ f(λ̃k) |1〉

)

I To uncompute the λ̃k register, reverse the first three steps to
undo phase estimation.

I If the phase estimation was perfect, we would have αk,j = 1 if
λ̃k = λj and 0 otherwise.

I Assuming this is the case, we get the state:

N∑
j=1

βj |uj〉

(√
1− f(λ̃k)2 |0〉+ f(λ̃k) |1〉

)
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Main Loop - Amplitude Amplification

5 Given the initial state |φ0〉 = UinvertB |initial〉, apply the
following repeatedly:

UinvertBRinitB
†U †invertRsucc

I where:
Rsucc = I − 2 |1〉 〈1| (reflection over |1〉⊥)
Rinit = I − 2 |initial〉 〈initial| (reflection over |initial〉⊥)

I Measure register L at the end of the loop until |1〉 is measured

Claim
Given p the probability to measure |1〉 in |φ0〉 - the amplitude
amplification procedure makes O

(
1√
p

)
repetitions.
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Proof
For some small θ, the initial state |φ0〉 can be represented as:

|φ0〉 = cos(θ) |0〉+ sin(θ) |1〉

Thus p = sin2(θ). Since θ is small and thus p ≈ θ2. As with
amplitude amplification, each repetition increases the angle by 2θ
(later elaborated). Thus after n repetitions the state becomes:

|φn+1〉 = cos((2n+ 1)θ) |0〉+ sin((2n+ 1)θ) |1〉

The amplitude is maxed when the coefficient of |1〉 is close to 1, as
in:

(2n+ 1)θ ≈ π

2
→ n ≈ π

4θ
=

π

4
√
p
�
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6 After measuring |1〉, the state is proportional to :

N∑
j=1

λ−1j βj |uj〉 = |x〉

7 Perform a measurement with respect to {M, I −M} as the
POVM to achieve an estimate of 〈x|M |x〉 up to error ε.
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Amplitude Amplification Illustration

We assumed the initial state is |φ0〉 = cos(θ) |0〉+ sin(θ) |1〉.
Thus the initial angle relative to the |0〉 axis is θ.
Let us denote by δ the angle incurred by the transformation
UinvertB and assume w.l.o.g the rotation is counterclockwise.
Thus the rotation by B†U †invert is a clockwise rotation by δ.
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The initial state |φ0〉 = UinvertB |initial〉 corresponds to a
counterclockwise rotation of δ from |initial〉:
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After reflection by |1〉⊥ = |0〉 and clockwise rotation by δ:
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After reflection by |initial〉⊥ and counterclockwise rotation by δ:

Total angle by |0〉 is θ − δ + 2θ + δ = 3θ. 35 / 48
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Ill-Conditioned Case

The algorithm can also handle ill-conditioned matrices.

Definition

Given a eigenvalue λ of a matrix A ∈ CN×N , the eigenspace of λ
is defined as:

Eλ = {v | (λI −A)v = 0}

Given a Hermitian matrix A ∈ CN×N with condition number κ, the
well-conditioned part of A is defined as:

span

( ⋃
λ≥1/κ

Eλ

)

Ill-conditioned part of A is symmetrically defined for λ < 1/κ.
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To handle ill-conditioned matrices, the algorithm inverts only
the part of |b〉 which is in the well-conditioned part of A.
Formally, instead of transforming |b〉 =

∑
j βj |uj〉 to

|x〉 =
∑

j λ
−1
j βj |uj〉, transform into a state close to:∑

j:λj≥1/κ

λ−1j βj |uj〉 |well〉+
∑

j:λj<1/κ

βj |uj〉 |ill〉

in time O(κ2).
The last qubit is a flag that enables to estimate the size of the
ill-conditioned part.
Handles cases where A is not invertible and produces the
projection of |b〉 on the well-conditioned part of A.
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Ill-Conditioned Uinvert

In the ill-conditioned case, Uinvert is changed.
The S register in step 4 is altered to:

|h(λ̃k)〉 =

√
1− f(λ̃k)2 − g(λ̃k)2 |0〉+ f(λ̃k) |1〉+ g(λ̃k) |2〉

g is also a filter function, same as f .
’2’ indicates part of |b〉 is in the ill-conditioned subspace of A.
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Filter Functions

f and g defined earlier are filter functions.
They set the amplitudes of the basis states of |h(λ)〉.
Setting κ′ = 2κ, we define a new range where f and g return
values in between their maximal and minimal values.
f and g adhere the following conditions for some constant
K > 1:
I f(λ) = 1

Kλ for λ ≥ 1
κ .

I f2(λ) + g2(λ) ≤ 1.
I g(λ) = 1

K for λ ≤ 1
κ′ .
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Example for a f and g for K = 2:

f(λ) =


1
2λ λ ≥ 1

1
2 sin

(
π
2 ·

λ− 1
κ′

1
κ
− 1
κ′

)
1
κ > λ ≥ 1

κ′

0 1
κ′ > λ

g(λ) =


0 λ ≥ 1

1
2 cos

(
π
2 ·

λ− 1
κ′

1
κ
− 1
κ′

)
1
κ > λ ≥ 1

κ′

1
2

1
κ′ > λ
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Optimality

The quantum algorithm run-time is O(κ2s2 logN/ε).
Article shows optimality in κ and 1/ε.
It also shows no classical algorithm can run in this time.
We will discuss optimality in κ and with relation to classical
algorithms.
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Optimality In κ

The runtime dependency in κ is polynomial.
The dependency in κ can not be improved to be
polylogaritmic.
Furthermore, it can not be improved to κ1−δ for δ > 0.
The proof of this statement is based on arguments from
complexity theory.
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Definition
Let MI denote the set of all algorithms that solve matrix inversion.

Theorem
Let MIQ ⊂MI be the set of all quantum algorithms that solve
matrix inversion for a N ×N matrix with condition number κ.
Then if there exists A ∈MIQ that has a error of ε and runs in
κ1−δpoly(logN, 1/ε) time, for some δ > 0 then BQP = PSPACE.

It is highly unlikely that BQP = PSPACE - so this results in
optimality.
The proof is based on a reduction from a general n-qubit
quantum circuit with T gates to a matrix inversion problem
with:
I N = O(T2n)
I κ = O(T )
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Proof Outline

TQBF (quantified SAT problem) problem - known to be
PSPACE-complete, solvable for input of size n with n qubits
and T = Θ(22n) gates.
Using the reduction, we get a matrix inversion problem
equivalent to solving TQBF, where N = O(23n). For
sufficiently large n, the error increases, specifically
ε ≥ 1/ log(n) with runtime:

κ1−δ
( logN

ε

)c1
≤ T 1−δ

(3n

ε

)c1
≤ T 1−δc2(n log n)c1

for some c1, c2 > 0.
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Given a constant m = 2
δ

log(2n)
log(logn)

Iterating the reduction for l ≤ m steps repeatedly, for each
step i:

Ti+1 = T 1−δ
i c2(n log n)c1

ni+1 = ni + log(18 Ti)

l = min{m, i}, where i is the first iteration Ti+1 > T
1−δ/2
i

Setting n0 = n, this results in Tl is poly(n0).
nl is shown to be also poly(n0).
Thus a PSPACE computation can be solved in quantum
polynomial time.
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Optimality Relating to Classical Algorithms

Theorem
Let MIC ⊂MI be the set of all classical algorithms that solve
matrix inversion for a N ×N matrix with condition number κ.
Then if there exists A ∈MIC that runs in poly(κ, logN) time, for
some δ > 0 then BPP = BQP.

Proof outline:
A problem in BQP with n qubits and T = poly(n) gates is
reduced to a inverting a matrix with with κ = poly(n),
N = 2npoly(n).
Assuming the specified classical algorithm exists, we get a
poly(n) runtime, thus BPP = BQP.
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Open Questions

Can we find another quantum algorithm for solving linear
systems of equations/matrix inversion using the following
formula?

A−1 =
1

det(A)
adj(A)

Can we find similar quantum algorithm providing exponential
speedup for other matrix operations such as determinants,
adjacent matrix and such?
Can we improve the dependency in N to be better than logN?
Can we find an efficient quantum algorithm for solving linear
systems of equations for non-sparse matrices?
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