Quantum Algorithm for Linear Systems of Equations

Article by: Aram W. Harrow, Avinatan Hassidim and Seth Lloyd, 2008 Presentation by: Nir Stiassnie and Shay Kricheli

Quantum Computing, Ben Gurion University

September 2020

The Quantum Algorithm Optimality Open Question References Problem Formulation Preliminary Definitions Classical Algorithms Runtime Runtime Improvement Attempts

Introduction and Outline

- Algorithm for solving linear equations [1]
- Very common in engineering and science

Outline:

- Problem formulation and definitions
- Runtime comparison with classical algorithms, exponential speedup
- Algorithm sketch concept and details
- Runtime optimality

The Quantum Algorithm Optimality Open Question References Problem Formulation Preliminary Definitions Classical Algorithms Runtime Runtime Improvement Attempts

Problem Formulation

Let:

- $A \in \mathbb{C}^{N \times N}$ be an $N \times N$ Hermitian matrix.
- $\vec{b} \in \mathbb{C}^N$ be a N-dimensional vector.

We would like to find a vector \vec{x} satisfying:

$$A\vec{x} = \vec{b}$$

If \boldsymbol{A} is invertible there exists a unique solution which is given by:

$$\vec{x} = A^{-1}\vec{b}$$

- $\bullet\,$ Cases in which A is not invertible will be discussed later on.
- For now we will assume that A is invertible.

The Quantum Algorithm Optimality Open Question References Problem Formulation Preliminary Definitions Classical Algorithms Runtime Runtime Improvement Attempts

Preliminary Definitions

Definition

Given $s \in \mathbb{N}$, a matrix $A \in \mathbb{C}^{N \times N}$ is called *s*-sparse if each row of A contains at most s non-zero entries.

- For any $N \times N$ matrix A: s = O(N).
- In this algorithm, best performance is achieved when: $s \ll N$.
- More specifically, when: s is $poly(\log N)$.
- As in: $\exists k \in \mathbb{N}$; $s = O(\log^k N)$.

The Quantum Algorithm Optimality Open Question References Problem Formulation Preliminary Definitions Classical Algorithms Runtime Runtime Improvement Attempts

Definition

Given an Hermitian matrix $A \in \mathbb{C}^{N \times N}$, the condition number of A is given by:

$$\kappa = \frac{|\lambda_{max}|}{|\lambda_{min}|}$$

where λ_{max} and λ_{min} are the maximal and minimal (by moduli) eigenvalues of A respectively.

- κ does not necessarily depend on N.
- In this algorithm, best performance is achieved when: $\kappa \ll N.$
- More specifically, when: κ is $poly(\log N)$.
- κ grows $\rightarrow A$ closer to a singular matrix. Such a matrix is said to be "ill-conditioned". If A is not invertible $\kappa = \infty$.

The Quantum Algorithm Optimality Open Question References Problem Formulation Preliminary Definitions Classical Algorithms Runtime Runtime Improvement Attempts

Classical Algorithms Runtime

- Solving the problem involves inverting A and multiplying the result by $\vec{b}.$
- Theorem 28.1 in [2] states that the matrix multiplication problem is not harder than the matrix inversion problem and theorem 28.2 states vice versa.
- Thus the runtime of the problem is proportional to that of performing matrix inversion.
- Inverting A can be done by performing Gaussian Elimination.

Problem Formulation Preliminary Definitions Classical Algorithms Runtime Runtime Improvement Attempts

For inverting a general matrix A:

- Gaussian Elimination algorithm runs in time $O(N^3)$.
- There are minor improvements, up to about $O(N^{2.373})$.
- It is strongly conjured that a tight bound for the matrix multiplication problem given two $N \times N$ matrices is $\Theta(N^2)$.
- Thus the runtime of classical algorithms for matrix inversion is polynomial with high certainty.

Problem Formulation Preliminary Definitions Classical Algorithms Runtime Runtime Improvement Attempts

Runtime Improvement Attempts

Assuming that A is s-sparse and with condition number κ :

- Conjugate Gradient Descent Runs in $O(Ns\kappa)$.
- With the assumptions on s and κ , we still get a runtime of $O(N \log^k N)$ for some k. At least polynomial in N.

Even if A is also positive semi-definite:

- The runtime of Conjugate Gradient Descent reduces to $O(Ns\sqrt{\kappa}).$
- We still get a runtime of $O(N \log^r N)$.
- Positive semi-definiteness is an additional assumption the quantum algorithm does not make.

Quantum Algorithm Runtime Algorithm Outline Detailed Algorithm Amplitude Amplification Illustration Ill-Conditioned Case

Quantum Algorithm Runtime

- Can a quantum algorithm improve the dependence in ${\cal N}$ to be better than polynomial time?
- $\bullet\,$ Even when the task is done just reading out the solution takes O(N) time.
- Let |x⟩ be a n-qubit quantum state (where n = log N) corresponding of the values of x̄ up to some error ε.
- In cases where the desired outcome is not |x⟩ itself, but some specific set of functions of |x⟩, the algorithm can perform faster.

Assuming A is s-sparse, for some measurement operator $M \in \mathbb{C}^{N \times N}$ such that $M \ge 0$, as in M is positive semi-definite:

- The expression $\langle x | M | x \rangle$ can be calculated efficiently with error ε in $poly(\log N, s, \kappa, 1/\varepsilon)$ time.
- More specifically, a runtime of $O(\kappa^2 s^2 \log N/\varepsilon)$, where ε is the error achieved in the output state $|x\rangle$.
- This provides exponential improvement over the best known classical algorithm in terms of N.
- The total exponential speedup is present where $\kappa,$ s and $1/\varepsilon$ are $poly(\log N).$

Introduction Quantum Algorith The Quantum Algorithm Algorithm Outlinn Optimality Detailed Algorith Open Question Amplitude Ampli References III-Conditioned Ca

Quantum Algorithm Runtime Algorithm Outline Detailed Algorithm Amplitude Amplification Illustration Ill-Conditioned Case

For example, let $N=10^{12}\approx 2^{40}$ (and when $\kappa,s,1/\varepsilon=O(\log(N))$:

- The runtime of the classical algorithm will be at least $\Omega(2^{40}).$
- The runtime of the quantum algorithm will be $poly(\log(2^{40})) = poly(40).$

Introduction Quantum The Quantum Algorithm Algorithm Optimality Detailed Open Question Amplituu References III-Condi

Quantum Algorithm Runtime Algorithm Outline Detailed Algorithm Amplitude Amplification Illustration Ill-Conditioned Case

Algorithm Idea

Given an Hermitian matrix A:

- Start with a pre-determined initial state.
- Performing phase estimation to approximate the the eigenvalues of A.
- Approximate the inverse of A by inverting its estimated eigenvalues.
- Use amplitude amplification to maximize the probability for measuring the desired outcome.
- **(**) Perform a measurement using M to estimate $\langle x | M | x \rangle$.

The Non-Hermitian Case

• As the algorithm assumes that A is Hermitian, if A is actually not, then as a preprocess step, we define:

$$D = \begin{bmatrix} 0 & A \\ A^{\dagger} & 0 \end{bmatrix}$$

As D is Hermitian, using the algorithm we can now solve the equation:

$$D\tilde{x} = \tilde{b}$$

for \tilde{x} , where:

$$\tilde{x} = \begin{bmatrix} 0 \\ \vec{x} \end{bmatrix} ; \ \tilde{b} = \begin{bmatrix} \vec{b} \\ 0 \end{bmatrix}$$

and then use \vec{x} as explained.

Introduction	Quantum Algorithm Runtime
The Quantum Algorithm	Algorithm Outline
Optimality	Detailed Algorithm
Open Question	Amplitude Amplification Illustration
References	Ill-Conditioned Case

- We want the quantum state $|x\rangle = A^{-1} |b\rangle$.
- We assumed A is invertible. Also Hermitian \rightarrow it is normal.
- Thus its eigenvectors $\{\vec{u_j}\}_{j=1}^N$ corresponding to its eigenvalues $\{\lambda_j\}_{j=1}^N$ consist an orthonormal basis.

Let us denote the representation of $|b\rangle$ in that basis:

$$\left|b\right\rangle = \sum_{k=1}^{N} \beta_k \left|u_k\right\rangle$$

Claim

The output state can represented as follows:

$$\left|x\right\rangle = \sum_{j=1}^{N} \lambda_{j}^{-1} \beta_{j} \left|u_{j}\right\rangle$$

Proof

3

By the spectral theorem $f(A) = \sum_{j=1}^{N} f(\lambda_j) |u_j\rangle \langle u_j|$ and thus: $A^{-1} = \sum_{j=1}^{N} \lambda_j^{-1} |u_j\rangle \langle u_j|$. We have:

$$\begin{aligned} x\rangle &= A^{-1} |b\rangle = \left(\sum_{j=1}^{N} \lambda_j^{-1} |u_j\rangle \langle u_j|\right) \left(\sum_{k=1}^{N} \beta_k |u_k\rangle\right) \\ &= \sum_{j=1}^{N} \lambda_j^{-1} \beta_j |u_j\rangle \langle u_j |u_j\rangle + \sum_{j=1}^{N} \sum_{\substack{k=1\\k\neq j}}^{N} \lambda_j^{-1} \beta_j |u_j\rangle \langle u_j |u_k\rangle \\ &= \sum_{j=1}^{N} \lambda_j^{-1} \beta_j |u_j\rangle \end{aligned}$$

since $\{\vec{u_j}\}_{j=1}^N$ consist an orthonormal basis. \Box

Algorithm Outline

- Input: Oracle access to the rows of an Hermitian matrix A, a method to produce a unit vector $|b\rangle$ and a cutoff value for κ .
- **1** Represent \vec{b} as a quantum state of the form:

$$\ket{b} = \sum_{i=1}^{N} b_i \ket{i}$$

where: $b_i = \vec{b}[i]$.

2 Next step - produce eigenvalues and eigenvectors of A.

- Using a simulation of a section of the phase estimation algorithm.
- ► Simulate phase estimation C U section with U = e^{iAt} (which is unitary) via a technique called Hamiltonian Simulation.
- ► The Fourier Transform is then applied.
- This results in a state proportional to:

$$\sum_{j=1}^{N} \beta_j \left| u_j \right\rangle \left| \lambda_j \right\rangle$$

We now have produced the eigenvalues in the register.

- Next step produce the inverse of the eigenvalues as a scalar. Naive algorithm:
 - Apply conditional rotation on ancilla qubit initialized to $|0\rangle$.
 - Rotate conditioned on the eigenvalues of A which are all real since it is Hermitian.
 - Let us define the rotation matrix:

$$\tilde{R}_{\lambda_j} = \begin{bmatrix} \sqrt{1 - \frac{1}{\lambda_j^2}} & -\frac{1}{\lambda_j} \\ \frac{1}{\lambda_j} & \sqrt{1 - \frac{1}{\lambda_j^2}} \end{bmatrix}$$

• But, \tilde{R}_{λ_i} is not necessarily unitary.

ln the case where $|\lambda_j| < 1$, we get $\tilde{R}_{\lambda_j} \tilde{R}^{\dagger}_{\lambda_j} \neq I$.

 Introduction
 Quantum Algorithm Runtime

 The Quantum Algorithm
 Algorithm Outline

 Optimality
 Detailed Algorithm

 Open Question
 Amplitude Amplification Illustration

 References
 Ill-Conditioned Case

This can be fixed using a normalization constant. Let:

$$R_{\lambda_j} = \begin{bmatrix} \sqrt{1 - \frac{C^2}{\lambda_j^2}} & -\frac{C}{\lambda_j} \\ \frac{C}{\lambda_j} & \sqrt{1 - \frac{C^2}{\lambda_j^2}} \end{bmatrix}$$

• Applying R_{λ_j} to the ancilla qubit we get the form:

$$\sum_{j=1}^{N} \beta_j |u_j\rangle |\lambda_j\rangle \left(\sqrt{1 - \frac{C^2}{\lambda_j^2}} |0\rangle + \frac{C}{\lambda_j} |1\rangle \right)$$

Conditioned on measuring 1 in the ancilla qubit, we get a state proportional to:

$$\sum_{j=1}^{N} \beta_j |u_j\rangle |\lambda_j\rangle \to C \sum_{j=1}^{N} \lambda_j^{-1} \beta_j |u_j\rangle |\lambda_j\rangle$$

where C is a normalization constant.

- The whole transformation is non-unitary involves measurement and scaling by a factor ≠ 1.
- Inverting the eigenvalues is the main challenge solved by the suggested algorithm.

Introduction Quantum Algorithm Runtime Algorithm Outline Optimality Open Question References III-Conditioned Case

• Uncompute the $|\lambda_j\rangle$ register, resulting in a state proportional to:

$$\sum_{j=1}^{N} \lambda_j^{-1} \beta_j \left| u_j \right\rangle = \left| x \right\rangle$$

where the equivalence is from the proven claim.

Detailed Algorithm

Let us detail the algorithm operation:

- Start with an *n*-qubit register $|initial\rangle$.
- Produce the state |b>. Assume there exists an efficiently implementable unitary operator B such that:

$$B \left| initial
ight
angle = \left| b
ight
angle = \sum_{i=1}^{N} b_i \left| i
ight
angle$$

possibly along with garbage in ancilla registers. For the discussion of the algorithm, all the errors in B are neglected.

③ Prepare the unitary operator e^{iAt} .

Definition

A Hermitian s-sparse matrix $A \in \mathbb{C}^{N \times N}$, is efficiently row computable if it has at most s nonzero entries per row and given a row index $|i\rangle$, the i'th row of A can be computed in time O(s).

- Assume A Hermitian, s-sparse and efficiently row computable.
- Thus we have an oracle access to the rows of A.
- For some time t ≥ 0 of the evolution, the unitary operator e^{iAt} can be calculated efficiently, as shown in [3].
- In time of approximately $O(\log Ns^2 t)$.

Uinvert subroutine

Let us first assume A is well-conditioned.

 \bullet Assume the state $|\psi_0\rangle$ can be prepared efficiently, where:

$$|\psi_0\rangle = \sqrt{\frac{2}{T}} \sum_{\tau=0}^{T-1} \sin \pi \left(\frac{\tau + \frac{1}{2}}{T}\right) |\tau\rangle$$

for some large T such that $T = O(\log Ns^2 t).$

- $|\psi_0
 angle$ are chosen to minimize a loss function of the error.
- Runtime for this operation is $poly(\log(T/\varepsilon))$.

• Define the subroutine of the algorithm U_{invert} :

Initiate a register of zeros noted by L. Prepare |\u03c6₀\u03c6 on register L and adjoin it to |b\u03c6, to result in:

$|\psi_0 angle\otimes|b angle$

For phase estimation, apply the next two steps:

• Apply conditional Hamiltonian evolution on $|\psi_0
angle\otimes|b
angle$ with:

$$\sum_{\tau=0}^{T-1} \left| \tau \right\rangle \left\langle \tau \right| \otimes e^{iAt_0\tau/T}$$

for some chosen t_0 such that $t_0 = O(\kappa/\varepsilon)$.

Apply the Fourier transform to register L.

Introduction Quantum Algorithm Runtime The Quantum Algorithm Algorithm Outline Optimality Den Question References III-Conditioned Case

After the Fourier transform, we end up with the state:

$$\sum_{j=1}^{N} \sum_{k=0}^{T-1} \alpha_{k,j} \beta_j \left| k \right\rangle \left| u_j \right\rangle$$

where $|k\rangle$ are the Fourier basis states and $|\alpha_{k,j}|$ is close to 1 if and only if $\lambda_j \approx \frac{2\pi k}{t_0}$. Let $\tilde{\lambda_k} = \frac{2\pi k}{t_0}$. We can relabel the state to be:

$$\sum_{j=1}^{N} \sum_{k=0}^{T-1} \alpha_{k,j} \beta_j \left| \tilde{\lambda_k} \right\rangle \left| u_j \right\rangle$$

Introduction Quantum Algorithm Runtime The Quantum Algorithm Algorithm Outline Optimality Open Question References III-Conditioned Case

To get $\tilde{\lambda_k}^{-1}$, apply the next non-unitary operation:

Adjoin a register S in the state:

$$|h(\tilde{\lambda_k})\rangle = \sqrt{1 - f(\tilde{\lambda_k})^2} |0\rangle + f(\tilde{\lambda_k}) |1\rangle$$

where:

- '0' indicates that the desired matrix inversion hasn't taken place yet.
- '1' indicates that it has.
- *f* is called a filter function used to produce the inverse of the eigenvalues. They adhere certain conditions that we will discuss later.
- This is a generalization of what we saw earlier.

Introduction Quantum Algorithm Runtime The Quantum Algorithm Outline Algorithm Outline Optimality Open Question References III-Conditioned Case

We end up with the following state:

$$\sum_{j=1}^{N} \sum_{k=0}^{T-1} \alpha_{k,j} \beta_j \left| \tilde{\lambda_k} \right\rangle \left| u_j \right\rangle \left(\sqrt{1 - f(\tilde{\lambda_k})^2} \left| 0 \right\rangle + f(\tilde{\lambda_k}) \left| 1 \right\rangle \right)$$

- To uncompute the λ_k register, reverse the first three steps to undo phase estimation.
- If the phase estimation was perfect, we would have α_{k,j} = 1 if λ̃_k = λ_j and 0 otherwise.
- Assuming this is the case, we get the state:

$$\sum_{j=1}^{N} \beta_j \left| u_j \right\rangle \left(\sqrt{1 - f(\tilde{\lambda_k})^2} \left| 0 \right\rangle + f(\tilde{\lambda_k}) \left| 1 \right\rangle \right)$$

28 / 48

Introduction Quantum Algorithm Runtime The Quantum Algorithm Algorithm Outline Optimality Open Question References III-Conditioned Case

Main Loop - Amplitude Amplification

• Given the initial state $|\phi_0\rangle = U_{invert}B |initial\rangle$, apply the following repeatedly:

 $U_{invert}BR_{init}B^{\dagger}U_{invert}^{\dagger}R_{succ}$

where:

- $R_{succ} = I 2 |1\rangle \langle 1|$ (reflection over $|1\rangle^{\perp}$)
- $R_{init} = I 2 |initial\rangle \langle initial|$ (reflection over $|initial\rangle^{\perp}$)
- Measure register L at the end of the loop until $|1\rangle$ is measured

Claim

Given p the probability to measure $|1\rangle$ in $|\phi_0\rangle$ - the amplitude amplification procedure makes $O(\frac{1}{\sqrt{p}})$ repetitions.

Proof

For some small θ , the initial state $|\phi_0\rangle$ can be represented as:

 $|\phi_0\rangle = \cos(\theta) |0\rangle + \sin(\theta) |1\rangle$

Thus $p = \sin^2(\theta)$. Since θ is small and thus $p \approx \theta^2$. As with amplitude amplification, each repetition increases the angle by 2θ (later elaborated). Thus after n repetitions the state becomes:

$$|\phi_{n+1}\rangle = \cos((2n+1)\theta) |0\rangle + \sin((2n+1)\theta) |1\rangle$$

The amplitude is maxed when the coefficient of $|1\rangle$ is close to 1, as in:

$$(2n+1)\theta\approx \frac{\pi}{2}\rightarrow n\approx \frac{\pi}{4\theta}=\frac{\pi}{4\sqrt{p}}\ \Box$$

Introduction Quantum Algorithm Runtime The Quantum Algorithm Algorithm Outline Optimality Open Question References Ill-Conditioned Case

() After measuring $|1\rangle$, the state is proportional to :

$$\sum_{j=1}^{N} \lambda_j^{-1} \beta_j \left| u_j \right\rangle = \left| x \right\rangle$$

② Perform a measurement with respect to $\{M, I - M\}$ as the POVM to achieve an estimate of $\langle x | M | x \rangle$ up to error ε .

Quantum Algorithm Runtime Algorithm Outline Detailed Algorithm Amplitude Amplification Illustration Ill-Conditioned Case

Amplitude Amplification Illustration

- We assumed the initial state is $|\phi_0\rangle = \cos(\theta) |0\rangle + \sin(\theta) |1\rangle$.
- Thus the initial angle relative to the $|0\rangle$ axis is θ .
- Let us denote by δ the angle incurred by the transformation $U_{invert}B$ and assume w.l.o.g the rotation is counterclockwise.
- Thus the rotation by $B^{\dagger}U_{invert}^{\dagger}$ is a clockwise rotation by δ .

The initial state $|\phi_0\rangle = U_{invert}B |initial\rangle$ corresponds to a counterclockwise rotation of δ from $|initial\rangle$:

33 / 48

After reflection by $|1\rangle^{\perp} = |0\rangle$ and clockwise rotation by δ :

34 / 48

Total angle by $|0\rangle$ is $\theta - \delta + 2\theta + \delta = 3\theta$. 35 / 48

Introduction Quantum Algorithm Runtime The Quantum Algorithm Algorithm Outline Optimality Open Question References III-Conditioned Case

Ill-Conditioned Case

The algorithm can also handle ill-conditioned matrices.

Definition

Given a eigenvalue λ of a matrix $A \in \mathbb{C}^{N \times N}$, the eigenspace of λ is defined as:

$$E_{\lambda} = \{ v \mid (\lambda I - A)v = 0 \}$$

Given a Hermitian matrix $A \in \mathbb{C}^{N \times N}$ with condition number κ , the well-conditioned part of A is defined as:

$$span\left(\bigcup_{\lambda\geq 1/\kappa}E_{\lambda}\right)$$

Ill-conditioned part of A is symmetrically defined for $\lambda < 1/\kappa$.

Introduction	Quantum Algorithm Runtime
The Quantum Algorithm	Algorithm Outline
Optimality	Detailed Algorithm
Open Question	Amplitude Amplification Illustration
References	Ill-Conditioned Case

- To handle ill-conditioned matrices, the algorithm inverts only the part of $|b\rangle$ which is in the well-conditioned part of A.
- Formally, instead of transforming $|b\rangle = \sum_{j} \beta_{j} |u_{j}\rangle$ to $|x\rangle = \sum_{j} \lambda_{j}^{-1} \beta_{j} |u_{j}\rangle$, transform into a state close to:

$$\sum_{j:\lambda_j \ge 1/\kappa} \lambda_j^{-1} \beta_j \left| u_j \right\rangle \left| well \right\rangle + \sum_{j:\lambda_j < 1/\kappa} \beta_j \left| u_j \right\rangle \left| ill \right\rangle$$

in time $O(\kappa^2)$.

- The last qubit is a flag that enables to estimate the size of the ill-conditioned part.
- Handles cases where A is not invertible and produces the projection of $|b\rangle$ on the well-conditioned part of A.

Introduction	Quantum Algorithm Runtime
The Quantum Algorithm	Algorithm Outline
Optimality	Detailed Algorithm
Open Question	Amplitude Amplification Illustration
References	Ill-Conditioned Case

Ill-Conditioned U_{invert}

- In the ill-conditioned case, U_{invert} is changed.
- The ${\cal S}$ register in step 4 is altered to:

$$|h(\tilde{\lambda_k})\rangle = \sqrt{1 - f(\tilde{\lambda_k})^2 - g(\tilde{\lambda_k})^2 |0\rangle} + f(\tilde{\lambda_k}) |1\rangle + g(\tilde{\lambda_k}) |2\rangle$$

- g is also a filter function, same as f.
- '2' indicates part of $|b\rangle$ is in the ill-conditioned subspace of A.

Filter Functions

- f and g defined earlier are filter functions.
- They set the amplitudes of the basis states of $|h(\lambda)\rangle$.
- Setting $\kappa' = 2\kappa$, we define a new range where f and g return values in between their maximal and minimal values.
- f and g adhere the following conditions for some constant K > 1:

$$\begin{array}{l} f(\lambda) = \frac{1}{K\lambda} \text{ for } \lambda \geq \frac{1}{\kappa}. \\ f^2(\lambda) + g^2(\lambda) \leq 1. \\ g(\lambda) = \frac{1}{K} \text{ for } \lambda \leq \frac{1}{\kappa'}. \end{array}$$

Introduction	Quantum Algorithm Runtime
The Quantum Algorithm	Algorithm Outline
Optimality	Detailed Algorithm
Open Question	Amplitude Amplification Illustration
References	III-Conditioned Case

Example for a f and g for K = 2:

$$f(\lambda) = \begin{cases} \frac{1}{2\lambda} & \lambda \ge 1\\ \frac{1}{2}\sin\left(\frac{\pi}{2} \cdot \frac{\lambda - \frac{1}{\kappa'}}{\frac{1}{\kappa} - \frac{1}{\kappa'}}\right) & \frac{1}{\kappa} > \lambda \ge \frac{1}{\kappa'}\\ 0 & \frac{1}{\kappa'} > \lambda \end{cases}$$

$$g(\lambda) = \begin{cases} 0 & \lambda \ge 1\\ \frac{1}{2}\cos\left(\frac{\pi}{2} \cdot \frac{\lambda - \frac{1}{\kappa'}}{\frac{1}{\kappa} - \frac{1}{\kappa'}}\right) & \frac{1}{\kappa} > \lambda \ge \frac{1}{\kappa'}\\ \frac{1}{2} & \frac{1}{\kappa'} > \lambda \end{cases}$$

40 / 48

 $\begin{array}{l} \textbf{Optimality Argument} \\ \textbf{Optimality In } \kappa \\ \textbf{Optimality Relating to Classical Algorithms} \end{array}$

- The quantum algorithm run-time is $O(\kappa^2 s^2 \log N/\varepsilon)$.
- Article shows optimality in κ and $1/\varepsilon$.
- It also shows no classical algorithm can run in this time.
- We will discuss optimality in κ and with relation to classical algorithms.

Optimality Argument Optimality In κ Optimality Relating to Classical Algorithms

Optimality In κ

- The runtime dependency in κ is polynomial.
- The dependency in *κ* can not be improved to be polylogaritmic.
- Furthermore, it can not be improved to $\kappa^{1-\delta}$ for $\delta > 0$.
- The proof of this statement is based on arguments from complexity theory.

Optimality Argument Optimality In κ Optimality Relating to Classical Algorithms

Definition

Let MI denote the set of all algorithms that solve matrix inversion.

Theorem

Let $MIQ \subset MI$ be the set of all quantum algorithms that solve matrix inversion for a $N \times N$ matrix with condition number κ . Then if there exists $\mathcal{A} \in MIQ$ that has a error of ε and runs in $\kappa^{1-\delta}poly(\log N, 1/\varepsilon)$ time, for some $\delta > 0$ then **BQP** = **PSPACE**.

- It is highly unlikely that **BQP** = **PSPACE** so this results in optimality.
- The proof is based on a reduction from a general n-qubit quantum circuit with T gates to a matrix inversion problem with:

$$\begin{array}{l} \blacktriangleright \quad N = O(T2^n) \\ \blacktriangleright \quad \kappa = O(T) \end{array}$$

Optimality Argument **Optimality In** κ Optimality Relating to Classical Algorithms

Proof Outline

- TQBF (quantified SAT problem) problem known to be **PSPACE**-complete, solvable for input of size n with n qubits and $T = \Theta(2^{2n})$ gates.
- Using the reduction, we get a matrix inversion problem equivalent to solving TQBF, where $N = O(2^{3n})$. For sufficiently large n, the error increases, specifically $\varepsilon \geq 1/\log(n)$ with runtime:

$$\kappa^{1-\delta} \left(\frac{\log N}{\varepsilon}\right)^{c_1} \le T^{1-\delta} \left(\frac{3n}{\varepsilon}\right)^{c_1} \le T^{1-\delta} c_2 (n\log n)^{c_1}$$

for some $c_1, c_2 > 0$.

44 / 48

 Introduction
 Optimality Argument

 Optimality
 Optimality In κ

 Open Question
 Optimality Relating to Classical Algorithms

- Given a constant $m = \frac{2}{\delta} \frac{\log(2n)}{\log(\log n)}$
- Iterating the reduction for $l \leq m$ steps repeatedly, for each step i:

$$T_{i+1} = T_i^{1-\delta} c_2 (n \log n)^{c1}$$

$$n_{i+1} = n_i + \log(18 T_i)$$

- $l = min\{m, i\}$, where i is the first iteration $T_{i+1} > T_i^{1-\delta/2}$
- Setting $n_0 = n$, this results in T_l is $poly(n_0)$.
- n_l is shown to be also $poly(n_0)$.
- Thus a **PSPACE** computation can be solved in quantum polynomial time.

Optimality Argument Optimality In κ Optimality Relating to Classical Algorithms

Optimality Relating to Classical Algorithms

Theorem

Let $MIC \subset MI$ be the set of all classical algorithms that solve matrix inversion for a $N \times N$ matrix with condition number κ . Then if there exists $\mathcal{A} \in MIC$ that runs in $poly(\kappa, \log N)$ time, for some $\delta > 0$ then **BPP** = **BQP**.

Proof outline:

- A problem in BQP with n qubits and T = poly(n) gates is reduced to a inverting a matrix with with $\kappa = poly(n)$, $N = 2^n poly(n)$.
- Assuming the specified classical algorithm exists, we get a poly(n) runtime, thus **BPP** = **BQP**.

Open Questions

• Can we find another quantum algorithm for solving linear systems of equations/matrix inversion using the following formula?

$$A^{-1} = \frac{1}{\det(A)} adj(A)$$

- Can we find similar quantum algorithm providing exponential speedup for other matrix operations such as determinants, adjacent matrix and such?
- Can we improve the dependency in N to be better than $\log N$?
- Can we find an efficient quantum algorithm for solving linear systems of equations for non-sparse matrices?

References

- Harrow, Aram W., Avinatan Hassidim, and Seth Lloyd. Quantum Algorithm for Linear Systems of Equations. Physical Review Letters 103.15 (2009): n. pag. Crossref. Web. arXiv:0811.3171.
- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein. *Introduction to Algorithms, Third Edition*. MIT Electrical Engineering and Computer Science.
- D.W. Berry, G. Ahokas, R. Cleve, and B.C. Sanders. Efficient *Quantum Algorithms for Simulating Sparse Hamiltonians*. Comm. Math. Phys., 270(2):359–371, 2007. arXiv:quant-ph/0508139.