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Question 1

In this question we are asked to implement the ridge-regression algorithm which can be considered as
regularized least squares - in which the cost functions penalizes the norm of w. Let S = {(xi, yi) | 1 ≤
i ≤ m} be the training sample set where xi = (x1i, x2i, ..., xdi)

T ∈ Rd, yi ∈ R; ∀1 ≤ i ≤ m. The
optimization problem is as follows:

min
w∈Rd

[
λ||w||2 +

m∑
i=1

(
〈w, xi〉 − yi

)2 ]
Let us define over S:

X :=
[
x1 x2 · · · xm

]
=


x11 x12 · · · x1m
x21 x22 · · · x2m

...
...

...
xd1 xd2 · · · xdm

 ∈ Rd×m ; Y :=


y1
y2
...
ym

 ∈ Rm

Thus the optimization problem can be written as follows:

min
w∈Rd

[
λ||w||2 + ||XTw − Y ||2

]
As seen in class, this optimization objective can be considered a function of w which can be differen-
tiated by the vector w using vector calculus and then equated to zero to get the optimal solution:

w∗ = (XXT + λId×d)
−1XY

As defined in class, our predictor will be:

hw∗(x) := 〈w∗, x〉
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(a)

In this section we are asked to display a plot of λ∗ (the value of λ that minimizes the mean squared
error on the test set) as a function of m - the training set size, for λ ∈ {0, 1, ..., 30} and m ∈ {10k | 1 ≤
k ≤ 10}. The plot is displayed below:
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Figure 1: Q1 - Optimal λ value vs. Training Sample Size

(b)

In this section we are asked about the expected trend in the plot according to what was learned in
class. In class we learned that:

`(h,D) ≤ `(h, S) +O

Å
B2R2

√
m

ã
where: R = maxi≤m ||xi||, B = maxw:hw∈H ||wi||. That means that the loss (as defined in class)
on the distribution is bounded from above by the loss on the sample set plus a term of the form

ψ = O
(
B2R2
√
m

)
. Thus the error on the test set - which is induced by the loss on the distribution - has

a lower upper bound when m increases. When m is small, in order to decrease ψ, we’d want B to
be small - which would happen when λ is bigger. Otherwise, when m is large, B can also be large
so λ can be smaller in order to achieve the same value for the minimization problem. Thus λ∗ - the
optimal value for λ can also be smaller. In conclusion - as m increases we’d expect λ∗ to decrease.

(c)

As can be seen - the expected trend occurs in the plot - as λ∗ decreases as m increases.

(d)

As we learned in class - the Bayes optimal regressor that minimizes the squared loss of the form:

E(X,Y )∼D
[
(h(X)− Y )2

]
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over all h : X → Y is:
h∗(x) = E(X,Y )∼D[Y |X = x]

Let us calculate it:
h∗(x) = E(X,Y )∼D[Y |X = x] =

E(X,Y )∼D[〈w, x〉+ η|X = x]
1
=

E(X,Y )∼D[〈w, x〉|X = x] + E(X,Y )∼D[η|X = x]
2
=

〈w, x〉+ E[η]
3
= 〈w, x〉+ 0 = 〈w, x〉

Let us explain each transition:

1. Linearity of the expected value operator

2. Given that X = x and w is constant - 〈w, x〉 is constant and η is independant of X

3. The expected value of the Gaussian random variable η is 0

For the absolute loss - as we learned in class - the Bayes optimal regressor that minimizes the absolute
loss of the form:

E(X,Y )∼D
[
|h(X)− Y |

]
over all h : X → Y is:

h∗(x) = MEDIAN(X,Y )∼D[Y |X = x]

Let us calculate it:
h∗(x) = MEDIAN(X,Y )∼D[Y |X = x] =

MEDIAN(X,Y )∼D[〈w, x〉+ η|X = x]
1
=

〈w, x〉+MEDIAN(X,Y )∼D)[η|X = x]
2
=

〈w, x〉+MEDIAN [η]
3
=

〈w, x〉+ E[η] = 〈w, x〉+ 0 = 〈w, x〉

Let us explain each transition:

1. Given X = x, and since w is a fixed vector - we can infer that the inner product 〈w, x〉 is a
constant. By the properties of a median, we can pull out the constant.

2. η is independant of X.

3. The median of a Gaussian random variable is it’s expected value.

Question 2

(a)

First, we can see that the maximal size of a decision tree with depth of at most n is the size of a
perfect binary tree with depth of n. The number of nodes in a perfect binary tree with depth of n is:
2n+1 − 1. In addition, we can see that each node has 3d+ 2 options: if the node is a test attribute, it
has 3d options, since for each feature there are 3 values of θ to be chosen from. If the node is a leaf,
it has 2 possible values. Therefore, in conclusion, we can bound the size of our hypothesis class by:

|H̄n| ≤ (3d+ 2)2
n+1−1 < (3d+ 2)2

n+1

→ |H̄n| ≤ (3d+ 2)2
n+1

�
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(b)

We learned in class that this inequality is guaranteed for any δ, ε ∈ (0, 1) from the PAC learning
theorem only if the algorithm used is an ERM algorithm. We also saw in class that the ID3 algorithm
(even with pruning) is not an ERM algorithm and thus it is not guaranteed and so Danny is wrong.

Question 3

(a)

The Naive-Bayes assumption does not hold for this distribution! Let us present a counter example:
Let us look at the example (−1, 1) with the label −1. The Naive-Bayes assumption holds if:
P[X = x|Y = y] = Πn

i=1P[X(i) = x(i)|Y = y]. We will calculate both sides separately:

P[X = x|Y = y] = P[X = (−1, 1)|Y = −1]
1
= 0

The transition 1 is from the distribution’s probabilities of the example: (x, y) = ((−1, 1),−1).

On the other hand:

Πn
i=1P[X(i) = x(i)|Y = y] = P[X(1) = −1|Y = −1] · P[X(2) = 1|Y = −1]

1
=

1

4
· 1

5
=

1

20
6= 0

Let us explain transition 1:

P[X(1) = −1|Y = −1] =
5
60 + 0

60
20
60

=
5

20
=

1

4

P[X(2) = 1|Y = −1] =
0
60 + 4

60
20
60

=
4

20
=

1

5

Thus we can conclude that the Naive-Bayes assumption doesn’t hold.

(b)

As we learned in class, the Naive-Bayes algorithm outputs the following predictor:

h∗(x) = sign

Å n∑
i=0

log
( pi

1− pi
)
· x(i)

ã
We can see that we are in the symmetric case - since:

p1 =
2
60 + 8

60
40
60

=
10

40
=

1

4
; p′1 =

5
60 + 0

60
20
60

=
5

20
=

1

4

p2 =
24
60 + 8

60
40
60

=
32

40
=

4

5
; p′2 =

5
60 + 11

60
20
60

=
16

20
=

4

5

Also, p0 = 40
60 = 2

3 .

We will now plug-in the values of p′is and get:

h∗(x) = sign

Å n∑
i=0

log
( pi

1− pi
)
· x(i)

ã
=

sign

Å
log 2 · 1 + log

1

3
· x(1) + log 4 · x(2)

ã
=

sign

Å
〈ŵ, x̂〉

ã
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Where ŵ =
(

log 2, log 1
3 , log 4

)
and x̂ =

(
1, x(1), x(2)

)
.

Question 4

(a)

We saw in class that if we perform PCA to reduce the dimension of our data from d to k - then the
distortion will be the sum of the d− k lowest eigenvalues of A =

∑m
i=1 xix

T
i = XTX ∈ Rd×d, where:

X :=
[
x1 x2 · · · xm

]T
=


x11 x12 · · · x1d
x21 x22 · · · x2d

...
...

...
xm1 xm2 · · · xmd

 ∈ Rm×d

We will now show that there are at least two eigenvalues of A that are equal 0. In algebra we learned
the following theorems:

1. For any matrix B we have: rank(B) = rank(BTB).

2. The number of non-zero eigenvalues of any matrix B is at most rank(B).

3. A matrix B is positive semi-definite ⇐⇒ each eigenvalue λi of B holds λi ≥ 0.

Since there’s a linear dependence between xt(3), xt(4) and xt(1), xt(2) - we have that rank(X) = 2. By
theorem 1 we have that rank(A) = rank(XTX) = rank(X) = 2. By theorem 2 - since rank(A) = 2,
we have that there are at least dim(A)− rank(A) = 4− 2 = 2 eigenvalues of A that are zero. �
We will prove that A is positive semi-definite. Let z ∈ Rd.

zTAz = zTXTXz = (Xz)T (Xz) = z′T z′ = ||z′||2 ≥ 0 �

By theorem 3 - we have that each eigenvalue λi of A holds λi ≥ 0. Thus both zero eigenvalues are
the lowest - and thus the distortion is their sum which is 0.

(b)

We will show an example of experiment results that satisfy these equations such that the distortion
of the PCA is larger than zero: Let us take m = 4 and the following examples:

x1 = (1, 1, 2, 1) ; x2 = (0, 1, 1, 1) ; x3 = (2, 2, 12, 100) ; x4 = (1, 2, 9, 64)

Let us now calculate the matrix A:

A = XTX =


1 0 2 1
1 1 2 2
2 1 12 9
1 1 100 64

 ·


1 1 2 1
0 1 1 1
2 2 12 100
1 2 9 64

 =


6 7 35 265
7 10 45 330
35 45 230 1779
265 330 1779 14098


Since we reduce the dimension of the examples from 4 to 2, the distortion of the PCA will equal
to the sum of the 2 lowest eigenvalues of the matrix A. By calculating the eigenvalues of A, we
get: λ1 = 0.11 ; λ2 = 0.63 ; λ3 = 7.93 ; λ4 = 14335.30. Therefore, the distortion of the PCA is:
0.11 + 0.63 = 0.74 > 0.

5



Question 5

In this question we are to claim whether the algorithm that minimizes the k-means objective learned
in class satisfies each of the three specified axioms and prove our claims.

(a - Scale Invariance)

We will show that this axiom holds. Let X be some space, let S ⊆ X and let ρ : X × X → R+ be
some metric. Let us denote by C = {C1, C2, ..., Ck} the clustering partition returned by F (S, ρ). Let
α > 0 ∈ R and let us denote by C ′ = {C ′1, C ′2, ..., C ′k} the clustering partition returned by F (S, αρ).
Let us assume towards contradiction that C 6= C ′. Thus, assuming the optimal solution is singular,
we get:

k∑
i=1

∑
x∈Ci

αρ(x, µi)
2 >

k∑
i=1

∑
x∈C′i

αρ(x, µi)
2

We can divide both sides of the inequality by α and get:

k∑
i=1

∑
x∈Ci

ρ(x, µi)
2 >

k∑
i=1

∑
x∈C′i

ρ(x, µi)
2

i.e. C ′ is a better solution than C - in contradiction to the fact that C is the optimal solution returned
from F (S, ρ). Therefore, in conclusion, F (S, ρ) = F (S, αρ) �.

(b - Richness)

We will show that this axiom doesn’t hold. Let X be some space and let S ⊆ X . For any valid
partition C that we choose of S of size bigger than k (the k value from the k-means algorithm) - such
as k + 1, we’ll get F (S, ρ) 6= C for all possible metrics ρ - since F returns a partition of size k �.

(c - Consistency)

Let us consider the following example: Let k = 2 and let there be only 5 points X = {x1, x2, x3, x4, x5}.
Let S = X and let us define:

ρ(xi, xj) = 1 ; ∀i, j ≤ 4 s.t. i 6= j

ρ(xi, x5) = 1 + ε ; ∀i ≤ 4 (1� ε > 0)

Since k = 2, there will be two clusters, that one can see that according to the k-means algorithm and
the metric defined will be the following:

C1 = {x1, x2, x3, x4} ; C2 = {x5}

Let us assume:
µ(C1) = x1 ; µ(C2) = x5

Thus the returned output of the algorithm will be:

F (S, ρ) = C = (C1, C2)

Now let us consider another metric:

ρ′(x1, x2) = ρ′(x3, x4) = α (1� α > ε > 0)

ρ′(xi, xj) = ρ(xi, xj) ; ∀i, j s.t. ¬
(
(i = 1 ∧ j = 2) ∨ (i = 3 ∧ j = 4)

)
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The only changes were to (x1, x2), (x3, x4) which are all in the same cluster, such that:

ρ′(x1, x2) ≤ ρ(x1, x2)

ρ′(x3, x4) ≤ ρ(x3, x4)

Let us assume towards contradiction that the algorithm now returns the same clusters C (with the
same centroids). Then the 2-means objective value will be:

G2−means(C1, C2) = min
{µi}2i=1

2∑
i=1

∑
x∈Ci

ρ(x, µi)
2 =

ρ(x1, x1)2 + ρ(x2, x1)2 + ρ(x3, x1)2 + ρ(x4, x1)2 + ρ(x5, x5)2 =

0 + α2 + 1 + 1 + 0 = 2 + α2

Let us define the following different clusters:

C ′1 = {x1, x2} ; C ′2 = {x3, x4, x5}

Let us assume:
µ(C ′1) = x1 ; µ(C ′2) = x3

Now the 2-means objective value will be:

G2−means(C
′
1, C

′
2) =

ρ′(x1, x1)2 + ρ′(x2, x1)2 + ρ′(x3, x3)2 + ρ′(x4, x3)2 + ρ′(x5, x3)2 = 0 + α2 + 0 + α2 + (1 + ε)2 =

1 + 2(α2 + ε) + ε2

For ε = α = 0.1:

G2−means(C
′
1, C

′
2) = 1 + 2(0.12 + 0.1) + 0.12 = 1.23 < 2 + α2 = G2−means(C1, C2)

In contradiction. Thus we’ll get:

F (S, ρ′) 6= (C1, C2) = F (S, ρ)

and thus the k-means algorithm does not satisfy consistency �.
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