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Abstract
This project focuses on a method to extract a frequency comb in me-
chanical means, for general interest and numerous practical applica-
tions in MEMS. The method of execution is the implementation of a
beam that is exhibiting non-linear dynamics that is perturbed and an-
alyzed for its transverse vibrations. The perturbation is an external
harmonic driver with a chosen small amplitude and frequency (which
is slightly detuned from the beam eigenfrequency), that when engaged
with the unperturbed beam oscillations, causes it reach a state of ”in-
jection pulling” - an effect that occurs when one harmonic oscillator
is coupled with a second one and causes it to oscillate in a frequency
near its own. This causes the beam to reach SNIC bifurcation, ren-
dering a frequency comb as desired. Theoretical analysis showed that
the problem can be modelled using a non-linear equation of the beam,
that translates to a form of the non-linear Duffing equation. While
a solution to the dynamics function of the beam is hard to obtain in
practice due to mathematical difficulties, a slow evolution model is sug-
gested that is composed of functions of a amplitude and phase. Using
several additional mathematical assumptions, the amplitude is seen to
be related to the phase, while the phase equation solution is seen to be
of the form of Adler’s equation. These assumptions ultimately reduce
the entire behaviour of the beam to a relatively simple solution to the
Adler equation, which has a known analytical solution. Computerized
numerical simulations are run on it to check the results and compare
them to the theory and desired outcome. The results agreed with the
theory and produce the expected frequency comb, showing the assump-
tions to be valid in extracting the comb.
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1 Introduction
Injection pulling and locking phenomenons occur in specific conditions when two
general oscillators interact, in a way that can make them synchronize and oscillate
simultaneously to some extant. The idea of harnessing that physical phenomenon
in our advantage was covered in great detail and has numerous applications in
physics, electrical and mechanical engineering [1] [2]. One interesting application
of this interaction is to render a frequency comb - a series of discrete, frequency
lines in the mathematical frequency domain centered around a carrier frequency.
Perhaps the most practical application of such a frequency comb is transition from
one frequency range to another, e.g., the carrier frequency can be at the extremely
high frequency (EHF) band, while the side band of the frequency comb can ap-
proach the radio frequency (RF) band. In this project we discusse the manner
in which this phenomenon occurs mechanically, when a mechanical oscillator is
excited in such a way that a saddle-node on invariant circle (SNIC) bifurcation
occurs and a frequency comb is produced. The implementation of this could relate
to many fields, and in this project the relation of the subject to MEMS - Micro-
electromechanical Systems will be analyzed, hoping to provide some insight into
the manner in which a fairly simple mechanical model can generate an output that
other, more complex systems produced. The main setback in electrical systems
is that they usually involve numerous components that each carry a degree of
noise in the corresponding output signal they produce, which is often unwanted
and usually disrupts the desired outcome and its applications. In that context, a
mechanical model can be favourable in that it produces a reduced amount of noise
and can be more precise in the results it will provide. The goal of this project is
to establish the theoretical background to the problem and to discuss its condition
and assumption of validity — using models that were previously examined. We
will be using a model of vibrations of a non-linear double-clamped beam [3] that
will be perturbed with a harmonic signal and then closed with a feedback loop
in order to stimulate the behaviour near a SNIC bifurcation that will hopefully
produce a frequency comb as desired. We will not use models that include complex
constraints such as parametric resonance reaction model [4] or a model involving
stochastic model, but try to provide a model as simple as possible. Afterwards, the
mathematical model will be put to the test with thorough experimentation using
computerized numerical analysis. Then the results will be presented, discussed
and finally - conclusions will arise towards the completion of the project.

1



2 Theoretical Background
In this report, there will be numerous mentions of basic and maybe a little more
advanced notions in mathematics and physics, and this section is dedicated to
introduce the general concept of the report and to lay out some main ideas that
are presumed to be introductory.

2.1 The Harmonic Oscillator
When modeling a system, one usually makes certain assumptions that relate the
motion in question to some familiar dynamical phenomena having a specific behav-
ior similar to the modeled system. One very useful and frequently used mechanical
entity is the harmonic oscillator. This dynamical system behaves in such a way,
that when displaced from its equilibrium position - a restoring force is exerted
upon it, that is a function of the displacement from the aforementioned equilib-
rium position.

2.1.1 Restoring Spring Force

In many practical and theoretical discussions - the force is taken to be linearly
proportional to the displacement and the proportionality constant is stated to
be the effective stiffness of the system. In many cases, the oscillator in itself is
a mechanical spring, and in that case that stiffness is the spring’s stiffness - a
mechanical property of the spring depending on the material in which it was made
of, geometrical factors of the spring and more. In a formulated linear equation of
motion of a particle subjected to a restoring force, the coefficient of the linear term
with respect to the position coordinate - is said to be that exact effective stiffness
of the system. Mathematically

F⃗spring = −kx⃗ (1)

Where F⃗spring is the force applied by the spring, k is the effective stiffness and
x⃗ is the position vector of the object. This stiffness factor is the constant given
in the first derivative of the equation of motion - which the first element in the
Taylor Series expansion of the motion function (under the assumption that the
motion is due to a physical potential and therefore sufficiently smooth and differ-
entiable). This project deals with a non-linear spring, and therefore implements
a different approach, one that introduces the first step taken into non-linear dy-
namics analysis - the use of the Duffing equation. This equation incorporates the
next element in the Taylor Series expansion of the motion function, which (under
the assumption that the motion’s potential is symmetric, thus cancelling all even
powers constituents) is the 3rd degree polynomial constituent.
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2.1.2 Frequency of Oscillation

A mechanical entity that is oscillating has a frequency of oscillation, that is the
scalar measure of a rate at which the entity oscillates. In harmonic oscillators -
oscillators that exhibit periodic, repeating motion, this measure is reasoned by an
analogy of being angular and relates the motion to an angular displacement per
unit time in an imaginary circle. When the oscillator is initially perturbed and
then left autonomous, meaning the system is not excited by an external force for
the motion time, that steady-state frequency of oscillation is then called the natural
frequency of the oscillator. When dealing with a linear system - the coefficient of
the linear term in the dynamics equation of motion is said to be the square of that
natural frequency

k

m
=∆ ω2

n (2)

where m is the effective mass of the system. The discussion in this project is
of a non-linear system that exhibits non-linear dynamics and therefore requires a
higher degree of analysis, as the Duffing equation offers. The expression for the
natural frequency in the Duffing case is somewhat more complex.

2.2 The Duffing Equation
The Duffing equation - named after Georg Wilhelm Christian Caspar Duffing
(1861 - 1944) is non-linear second-order differential equation used to model cer-
tain damped and driven oscillators. It is the first step from a linear system to a
non linear one in that it includes a cubic term that can be thought of as an ad-
ditional term considered from the Taylor Series of the Sine function. The forced
form of the equation is given by

ẍ+ 2ζωnẋ+ ω2
nx+ δx3 = A cos (ωdt) (3)

where x is the unknown displacement of the oscillator and ζ, ωn, A, ωd and δ
are given constants, that each represent a physical characteristic of the system in
question:

• ζ - represents the amount of damping in the system

• ωn - represents the natural frequency of oscillation of the system, which is
the square of the linear effective stiffness

• δ - represents the amount of non-linearity in the restoring force

• A - is the amplitude of the periodic driving force

• ωd - is the angular frequency of the periodic driving force

3



Equation 3 describes the motion of a damped oscillator with a more complex
potential than in simple harmonic motion. The Duffing equation in its various
forms is used to describe many nonlinear systems. Although most physical systems
cannot be described accurately in this way for a wide range of operating conditions,
such as frequency and amplitude of excitation, in many cases it is possible to use
this equation as an approximate description so that their behaviour can be studied
qualitatively. In some situations, quantitative analysis can be conducted for small
amplitudes of excitation. In many cases, it is the first step in moving from a linear
to a nonlinear system. The Duffing equation is an example of a relatively simple
dynamical system that exhibits chaotic behavior [5].

2.2.1 Duffing Equation Normalization

With use of dimensional analysis, the duffing equation can be reduced to a more
simple form, that will be defined by a single parameter - the damping. To do so,
we’ll define a normalized time scale

τ =∆ ωnt (4)

where t is the regular-scale time. Let us now define two additional non-dimensional
parameters

y =∆
x

σ
;σ =∆

ωn√
δ

(5)

Using these two and the Chain Rule from Calculus, we can express the time deriva-
tives of x as follows

ẋ =
dx

dt
=
d(σy)

dt
= σ

dy

dt
= σ

dy

dτ

dτ

dt
= ωnσ

dy

dτ

ẍ =
d2x

dt2
=
dẋ

dt
=
d(ωnσ

dy
dτ
)

dt
= ωnσ

d(dy
dτ
)

dt
= ωnσ

d(dy
dτ
)

dτ

dτ

dt
= ω2

nσ
d2y

dτ 2

(6)

Plugging into equation 3

ω2
nσ
d2y

dτ 2
+ 2ζω2

nσ
dy

dτ
+ ω2

nσy + δσ3y3 = A cos (ωdt) (7)

Dividing by ω2
nσ

d2y

dτ 2
+ 2ζ

dy

dτ
+ y +

δσ3

ω2
nσ
y3 =

A

ω2
nσ

cos (ωdt) (8)

Using the definition of σ we get the final form

d2y

dτ 2
+ 2ζ

dy

dτ
+ y + y3 =

A

ω2
nσ

cos (ωdt) (9)
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2.3 Phase Space Analysis
The use of Phase Space is widely accepted in dynamical systems analysis and is in
many cases a more convenient approach while dealing with a non-linear problem.
In classical mechanics, the phase space is the space of all possible states of a
physical system - being positions of all particles located at generalized coordinates
q, and maybe also their velocities or momenta, for one needs both the position
and momentum of system in order for it to be deterministic - as in such that it
is possible to determine its future behavior. Mathematically, the configuration
space of n degrees of freedom might be defined by a manifold M in Rn while n can
even be infinite. Each possible state corresponds to one unique point in the phase
space and in that manner it is possible to examine systems with high degrees of
freedom. The phase space portrait is a graphical representation of the phase space,
and is many cases servers as a useful solution method in non-liner dynamics. In
the simplest of cases, the phase portrait is 2-dimensional as see in figure 2.1.

Figure 2.1: Phase Space Portrait of a Pendulum2

A typical analysis in the phase plane starts with first defining the state variables
- a set of generalized coordinates that define our system. Then, we’d like to express
the state variables’ time derivative as a function of their current state - namely
construct a set of differential equations for each one of them, in the form

˙⃗
x(t) = f⃗ [ ⃗x(t)] (10)

When the analysis is made on a linear system, these equations can be written in
a simple matrix form and the whole analysis is made much easier to cope with

˙⃗
x(t) = A(t) ⃗x(t) +B(t) ⃗u(t) (11)

where A(t) and B(t) are appropriate matrices and u(t) is the input of the system.
Alas, in non-linear dynamics we have to use other, more complex methods.

2Modern Physics Lectures, BGU Physics http://physweb.bgu.ac.il/COURSES/
ModernPhysCohen/LectureNotes/topic18.html
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2.3.1 Phase Portrait

A phase portrait is a geometric representation of the trajectories of a dynamical
system in the phase plane. Each set of initial conditions is represented by a different
curve, or point. Phase portraits are an invaluable tool in studying dynamical
systems. They consist of a plot of typical trajectories in the state space. This
reveals information such as whether an attractor, a repellor or limit cycle is present
for the chosen parameter value. A phase portrait graph of a dynamical system
depicts the system’s trajectories (with arrows) and stable steady states (with dots)
and unstable steady states (with circles) in a state space. The axes are of state
variables - x and ẋ [6]. Phase portraits are highly useful in non-linear dynamics
due to their depiction of nullclines - lines wherein one variable does not change
over time (as in ẋ1 = 0 or ẋ2 = 0 for example) and of critical points - intersections
of nullclines where neither variable changes over time (as in ẋ1 = ẋ2 = 0 for
example).

2.4 Injection Pulling and Locking
Injection Pulling is a phenomenon occurring when a harmonic oscillator is exter-
nally disturbed by a second oscillator that is oscillating at a nearby frequency
(illustrated in figure 2.2). The two oscillators then become coupled, meaning they
affect each other in their oscillation frequencies. If the coupling is strong enough
then the frequencies can get near enough, which will cause the second oscillator
to capture the first oscillator and making it to have essentially identical frequency
as the second. When that two oscillators move at the same frequency - then this
is called Injection Locking. When the second oscillator merely disturbs the first
but does not capture it entirely, the effect is called injection pulling. These phe-
nomenons were studied by Adler [7], Razavi [8], Kurokawa [9] each from a slightly
different perspective, and many others, while one of the first mentions of them on
paper were by the mid 17th century by the Dutch scientist Christiaan Huygens.
He noticed that the pendulums of two clocks on the wall moved in unison if the
clocks were hung close to each other [10]. He deducted that the coupling of the
mechanical vibrations through the wall drove the clocks into synchronization [11]
[12].

Injection locking has been used in many beneficial ways in the design of early
television sets and oscilloscopes, allowing the equipment to be synchronized to
external signals at a relatively low cost [12]. Injection locking has also been used
in high performance frequency doubling circuits. However, injection locking and
pulling, when unintended, can degrade the performance of phase locked loops and

3On the problem of synchronization of identical dynamical systems: The Huygens’s clocks,
Rui Dilão
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Figure 2.2: Two pendulums in injection pulling 3

RF integrated circuits. Synchronization properties of periodic self-sustained oscil-
lators are based on the existence of a special variable, called the phase, usually
noted with the Greek letter ϕ. Mathematically, self-sustained oscillations corre-
spond to a stable limit cycle in the state space of an autonomous continuous-time
dynamical system. The phase ϕ can be introduced as the variable parametrizing
the motion along this cycle. [13]

2.5 The Adler Equation
Robert Adler (1913 - 2007) was an Austrian-born American inventor with a Ph.D.
in Physics from the University of Vienna. Adler was best known as the co-inventor
of the television remote control. What was less known about him is that he also did
early work on certain highly nonlinear oscillating circuits, which led eventually to
the Kuramoto model of synchronization, which is a generalization of the equation
Adler proposed, named after him. [14]. The equation is of the form

dϕ

dt
= B[1−K sin (ϕ)] (12)

The Adler equation models the rate of phase rotation of a oscillator at a given
instant from the phase (noted ϕ) and amplitude relations between the excited
oscillator and the external signal, while A and B are constants. Mathematically,
this manifests as a differential equation for the oscillator phase (ϕ) as a function of
time. The derivation of the equation and a thorough explanation of its parameters
as presented by Adler, is shown in appendix 8.1.

2.6 Bifurcation Theory
In most cases when analyzing complex system of non-linear behaviour, the use of
bifurcation analysis is a powerful tool for understanding the system’s character-
istics and reaction to a change in one of its affection parameters. A bifurcation

7



occurs when a small smooth change made to the parameter values (the bifurcation
parameters) of a system causes a sudden ’qualitative’ or topological change in its
behaviour. Bifurcations is a mathematical study of change that surfaces in con-
tinuous systems (described by differential equations - ordinary and partial) and
discreet systems (described by maps). A local bifurcation occurs when a param-
eter change causes the stability of an equilibrium (or fixed point) to change. In
continuous systems, this corresponds to the real part of an eigenvalue of an equi-
librium passing through zero. These changes are witnessed in the phase portrait,
where the topological changes in the phase portrait of the system can be confined
to arbitrarily small neighbourhoods of the bifurcating fixed points by moving the
bifurcation parameter close to the bifurcation point (hence ’local’) [15]. Math-
ematically, we can consider the continuous dynamical system described by the
vector ODE

˙⃗x = f⃗(x⃗, λ) (13)
A local bifurcation occurs at point (x0, λ0) if the Jacobian matrix of the function
f has an eigenvalue with zero real part. If the eigenvalue is equal to zero, the
bifurcation is a steady state bifurcation, but if the eigenvalue is non-zero but purely
imaginary, this is a Hopf bifurcation. Examples of local bifurcations include

• Saddle-node (fold) bifurcation

• Transcritical bifurcation

• Pitchfork bifurcation

• Period-doubling (flip) bifurcation

• Hopf bifurcation

• Neimark–Sacker (secondary Hopf) bifurcation

2.6.1 SNIC Bifurcation

The Saddle-Node on an Invariant Circle (SNIC) bifurcation is one of the basic
scenarios for creation of a periodic orbit in smooth continuous-time dynamical
systems. Intuitively, one can say it is a bifurcation that causes the system to
reach an infinite limit cycle in the phase plane and oscillate freely around it.
Mathematically, a SNIC bifurcation for a vector field that lies in Cn (where n ≥ 2)
and represented by ˙⃗x = f⃗(x⃗) on a manifold M is an elementary saddle-node - an
equilibrium with a simple eigenvalue 0 with no other eigenvalues on the imaginary
axis with a trajectory that is asymptotic to the saddle-node in both directions of
time - resulting in movement of the states of the system along an invariant circle in

8



Figure 2.3: Illustration of a SNIC bifurcation4

Cn [16]. Such a bifurcation results in an appearance of a limit cycle of an infinite
period, as illustrated in figure 2.3.

One has to note that it is possible to calculate the time period of the limit
cycle using Adler’s equation [17]. Calculating the period of the limit cycle of this
bifurcation for |K| > 1 (the case in which there is no synchronization)

T =

∫ T

0

dt =

∫ 2π

0

dt

dϕ
dϕ =

∫ 2π

0

dϕ

ϕ̇
=

1

B

∫ 2π

0

dϕ

1−K sin (ϕ)
=

1

B

2π√
K2 − 1

(14)

One can see that
lim

|K|→1
T → ∞ (15)

Figure 2.4 shows the three states of the SNIC bifurcation - the left is when the
system has two points of equilibrium- one stable (black) and one not stable (white),
the middle is when the two point intersect and the bifurcation occurs and the right
is when the system doesn’t have an equilibrium point and then it oscillates freely.
SNIC bifurcation can occur only in non-linear systems and therefore we wish to
build a non-linear model.

2.7 Frequency Comb Modulation
This section will lay out the relevant details regarding the modulation of the Fre-
quency Comb. A Frequency Comb is a set of equally spaced discrete frequencies

4C. Gros, Complex and Adaptive Dynamical Systems, Chapter 2 - Bifurcations and Chaos in
Dynamical Systems

5(A Bit of) Biological Neural Networks – Part I, Spiking Neurons, Jack Terwilliger
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Figure 2.4: SNIC Bifurcation States5

that are centered around a carrier frequency and obtained from a vibrating phys-
ical system. In this project we investigate theoretical aspects of frequency comb
generation from a closed-loop MEMS beam, which is exposed to an external pe-
riodic perturbation. When the detunning between the carrier frequency and the
perturbation frequency is sufficient, a SNIC bifurcation occurs and the desired fre-
quency comb is obtained. To simplify the notion, we can discuss about the Dirac
comb first.

2.7.1 The Dirac Comb

The Dirac Comb is strictly a mathematical notion and is a periodic tempered
distribution constructed from a set of Dirac delta functions. The generalized Dirac
Delta function can be defined in the following manner: Let δϵτ denote the following
function

δϵξ(t) =
∆


0 ; t < ξ
1
ϵ

; ξ < t < ξ + ϵ

0 ; t > ξ + ϵ

(16)

Now the Dirac Delta function is (loosely) defined as

δξ(t) =
∆ lim

ϵ→0
δϵξ(t) =

{
+∞ ; t = ξ

0 ; t ̸= ξ
(17)
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where we say ”loosely” due to the fact that ∞ is of course - not a real value. The
function has two special property of the form∫ ∞

−∞
δξ(t)dt = 1 (18)

∫ ∞

−∞
f(t)δξ(t)dt = f(ξ) (19)

for all continuous compactly supported functions f(t). The Dirac Comb then is a
sum of the form

XT (t) =
∆

∞∑
k=−∞

δ0(t− kT ) (20)

Where XT (t) - the Shaw function denotes the math function defining the Dirac
Comb (illustrated in figure 2.5) and T ∈ R is some period. This function as
written is defined in the time domain, and when thinking of the analogous notion
in the frequency domain - we the get a frequency comb.

Figure 2.5: Illustration of a Dirac Comb6

2.7.2 Frequency Comb definition

Mathematically, the frequency domain representation of a perfect frequency comb
(a frequency comb that is defined ∀ω ∈ R) is a series of delta functions spaced
according to the following formula

fn =∆ f0 + nfr (21)
6Dirac comb, Wikipedia
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where n ∈ N, fr is the comb spacing (equal to the modulation frequency), and f0
is the carrier offset frequency, such that f0 ≤ fr. The carrier offset frequency or
center frequency is the nominal frequency of an analog frequency modulation that
is formed around it. [18]

Figure 2.6: Schematics of a frequency comb—the carrier frequency is at the center
of the Lorentzian (orange) and there is a set of discrete frequency lines around it,
i.e., a frequency comb7

2.7.3 Mechanisms for Frequency Comb Generation

As mentioned before, frequency combs are generally generated using optical and
electrical means. The most popular way of generating a frequency comb is with
a mode-locked laser. Such lasers produce a series of optical pulses separated in
time. The spectrum of such a pulse train approximates a series of Dirac delta
functions separated by the repetition rate of the laser. Others techniques involve
using electro-optic modulation of a continuous-wave laser, using four-wave mixing
and forming low-frequency combs using electronic components.

3 Research Problem Formulation
This study’s problem is centered around a perturbed beam that is excited exter-
nally and is controlled with a feedback loop. In this section the full extant of the
problem - with excitation, damping and control - will be presented with a known
model for a non-linear beam from solid mechanics. The effect of the control feed-
back loop and external excitation will be taken into consideration. An illustration
of the system in the form of a MEMS - based device is presented in figure 3.1.

7Spectroscopic applications of femtosecond optical frequency combs, Helen S. Margolis
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Figure 3.1: Schematics of the MEMS based device

3.1 Beam Equation Derivation
The beam in question is taken to be with boundary conditions of clamped-clamped.
We will show that this beam’s dynamics equation will reduce to the Duffing equa-
tion [20]. Using a model from Lifshitz and Cross’ work ([3]), the controlled, driven
and damped transverse vibrations in one spatial axis for a slender beam with uni-
form mass density per unit volume ρ, length l, cross section A, area moment of
inertia in the perpendicular direction, relative to the neutral axis I and Young’s
modulus E are described by the following partial differential equation

ρA
∂2u(x, t)

∂t2
+ 2ζ

∂u(x, t)

∂t
− τ [u(x, t)]

∂2u(x, t)

∂x2
+ EI

∂4u(x, t)

∂x4

=
[
A cos (ωdt) + ψ[u(x, t)]

]
δ(x− x0)

(22)

where u(x, t) is a function that describes the transverse displacement of the beam
at a point x and time t, ,τ is a functional of u that accounts for tension due to
the midline stretching, ψ is the control function - a saturated closed loop feedback
input that is dependant on u(x, t) (which we will introduce later on) and A cos (ωdt)
represents the forcing element - both act on the beam at the location 0 ≤ x0 ≤ l.
A is the amplitude of the driving external signal such that A≪ 1, ωd is the drive
angular frequency, which is close to the natural frequency (ωd = 1−∆ω; ∆ω ≪ 1),
the damping ratio ζ is inserted artificially to model the actual physical behaviour
of the beam.
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3.1.1 Boundary Conditions

To solve this partial differential equation, one has to define appropriate boundary
conditions. In our case, the beam is taken to be clamped from both sides. A
clamped-clamped bean has boundary condition of

u(0, t) = u(l, t) =
∂u

∂x
(0, t) =

∂u

∂x
(l, t) = 0 (23)

As the displacement of the beam at the end points is zero, as well as the angle -
which is the derivative with respect to the spatial coordinate.

3.1.2 Axial Tension non-Linearity

One way to model the axial tension τ is in following form

τ [u(x, t)] =
EA

2l

∫ l

0

(
∂u(x, t)

∂x

)2

dx (24)

As one can see, plugging this into eq. 22 yields a non-linear term, as we want to
produce a Duffing equation

ρA
∂2u(x, t)

∂t2
+ 2ζ

∂u(x, t)

∂t
− EA

2l

∫ l

0

[
∂u(x, t)

∂x

]2
dx · ∂

2u(x, t)

∂x2
+ EI

∂4u(x, t)

∂x4

=
[
A cos (ωdt) + ψ[u(x, t)]

]
δ(x− x0)

(25)
We wind up with this integro-differential equation that looks pretty rough but can
be solved using some assumptions.

3.1.3 Existence and Uniqueness

With the boundary conditions set and appropriate initial conditions our problem
will be a Cauchy problem - a partial differential equation that satisfies certain
conditions that are given on a surface in the domain - in our case - R3. The
Duffing equation has several initial conditions that can be applicable and moreover
it exhibits chaos in certain condition so a small change in the initial conditions
can result in different behaviour entirely. Thus we don’t exactly know which ones
are valid in our case, but we nonetheless know that for the appropriate ones,
the existence and uniqueness theorem holds. The Cauchy–Kowalevski theorem
states that local existence and uniqueness for analytic partial differential equations
associated with Cauchy initial value problems holds for a system of m differential
equations in n dimensions when the coefficients are analytic functions. Therefore
we can say that we’ll get a solution and it will be unique.
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3.2 Solution to the Beam PDE
Partial differential equations can be rather complicated to solve, but in our case
the problem can be manipulated using the fairly familiar technique of variable
separation.

3.2.1 Variable Separation

The general solution to the beam equation can be achieved by we using variable
separation (also known as the Fourier method) and taking u(x, t) to be the sum
of the multiplications of a spatial function X(x) and a temporal function P (t) for
the infinite DOF’s as follows

u(x, t) =
∞∑
n=1

Xn(x)Pn(t) (26)

Furthermore, we now use Single Mode Assumption. To consider the vibrations
of an individual eigen-mode, under the assumption that it does not interact with
other modes, we take un(x, t) = Xn(x)Pn(t) for one of the beam’s eigenmodes n.
Plugging un(x, t) into equation 22 we can solve the equation for the spatial and
temporal functions. The entire mathematical derivation is shown in appendix 8.2.

4 Mathematical Analysis and Hypothesis
In this section, the mathematics of the subject will be shown in detail to provide a
firm grasp on the assumptions and calculations made in this project. First we will
discuss the general equation we would want to solve and then introduce several
mathematical and physical assumptions to simplify our expression to improve its
analytic computability. We will present parallel numerical analysis throughout.

4.1 The Spatial Equation Analysis
As mentioned in the PDE derivation - to solve for the spatial function Xn(x),
one takes the homogenous equation and set τ = 0 to yields a linear equation that
produces a solution for the eigenfunctions Xn(x) that can be expressed in the form

Xn(x) =
1

an

[
(sin (αnl)− sinh (αnl))(cos (αnx)− cosh (αnx))−

−(cos (αnl)− cosh (αnl))(sin (αnx)− sinh (αnx))
] (27)

where we use the convention that the local maximum of the n’th eigenmode Xn(x)
that is nearest to the center of the beam is scaled to 1. an is the value of the
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function in the square brackets at its local maximum that is closest to x = 0.5l.
Note that as the beam has an infinite number of DOF’s, it has an infinite number
of eigenfunctions induced by a corresponding infinite number of eigenmodes - αnl
that are the solutions to the transcendental equation given in equation 99 in the
derivation, which we’ll show here to clarify

cos (αnl) cosh (αnl) = 1 (28)

This equation can be solved using a graphical solution as shown in figure 4.1. Note
that this figure does not illustrate a physical entity but a purely mathematical
solution to equation 99. The code for this simulation is given in appendix 8.4.1.

Figure 4.1: Graph of cos (αnl) cosh (αnl) = 1

One can see that the first solutions in the infinite set of eigenvalues are ap-
proximately

{αnl} ≈ {4.721, 7.869, 10.96, 14.11, 17.28, 20.4623.58, 26.7...} (29)

and the remaining ones tend towards odd-integer multiples of π
2
, as n increases.

We are interested in the first mode of vibration for the beam, so we can calculate
X1(x)

X1(x) =
1

a1

[
(sin (α1l)− sinh (α1l))(cos (α1x)− cosh (α1x))−

−(cos (α1l)− cosh (α1l))(sin (α1x)− sinh (α1x))
] (30)

Calculating a1

a1 =

[
sin (α1l)− sinh (α1l)

][
cos

(
α1
l

2

)
− cosh

(
α1
l

2

)]
−

−
[
cos (α1l)− cosh (α1l)

][
sin

(
α1
l

2

)
− sinh

(
α1
l

2

)]
= 93.357

(31)
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Plugging a1 and the rest of the coefficients we get

X1(x) =
1

93.357

[
57.758 · (sin (α1x)− sinh (α1x))−

−58.787 · (cos (α1x)− cosh (α1x))
]
=

= 0.618 ·
[
sin (α1x)− sinh (α1x)

]
− 0.629 ·

[
cos (α1x)− cosh (α1x)

] (32)

We can also note that
α1 =

4.75

l
(33)

So the equation can be written as

X1(x) = 0.618 ·
[
sin

(
4.75

x

l

)
− sinh

(
4.75

x

l

)]
−

−0.629 ·
[
cos

(
4.75

x

l

)
− cosh

(
4.75

x

l

)] (34)

Moreover, because x ∈ [0, l], we can take s = 4.75x
l

and then

X1(s) = 0.618 ·
[
sin (s)− sinh (s)

]
− 0.629 ·

[
cos (s)− cosh (s)

]
(35)

where s ∈ [0, 4.75].

4.2 The Temporal Dynamics Equation Analysis
As we saw earlier, the previous chapter left us with the beam vibrations equation
that we solved for the spatial coordinate, so we now have to solve the non-linear,
non-homogenous equation to get a corresponding function of the beam’s dynamics
in time.

4.2.1 Reduction of the Temporal Equation to the Duffing Equation

Taking equation 77, multiplying all of the equation by Xn(x), integrating over the
whole length of the beam with respect to the position (

∫ l

0
dx) and doing some inte-

gration by parts yields the time-dependant solution for the n’th mode’s dynamics
of the beam

¨Pn(t) +
2ζ

ρA
˙Pn(t) +

EI
∫ l

0
[X ′′

n(x)]
2dx

ρA
∫ l

0
X2

n(x)dx
Pn(t) +

E
[ ∫ l

0
[X ′

n(x)]
2dx

]2
2ρl

∫ l

0
X2

n(x)dx
P 3
n(t) =

=

∫ l

0

[
A cos (ωdt) + ψ(un(x, t))

]
Xn(x)δ(x− x0)dx

(36)
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We can see that the integral in the RHS is non-dependant on the forcing and
control. Moreover, using the property of the Dirac Delta function mentioned in
equation 19, we can write the equation in the final from

¨Pn(t) +
2ζ

ρA
˙Pn(t) +

EI
∫ l

0
[X ′′

n(x)]
2dx

ρA
∫ l

0
X2

n(x)dx
Pn(t) +

E
[ ∫ l

0
[X ′

n(x)]
2dx

]2
2ρl

∫ l

0
X2

n(x)dx
P 3
n(t) =

=

[
A cos (ωdt) + ψ((un(x, t))

]
Xn(x0)

(37)

Equation 37 is of the form of the Duffing equation, assuming the constants are
known. Now we’d like to reduce this equation to a normalized form as shown in
equation 9. To do so, let us equate coefficients in the following manner

ω2
n =

EI
∫ l

0
[X ′′

n(x)]
2dx

ρA
∫ l

0
X2

n(x)dx
→ ωn =∆

√√√√EI
∫ l

0
[X ′′

n(x)]
2dx

ρA
∫ l

0
X2

n(x)dx
(38)

2ζ̃ωn =
2ζ

ρA
→ ζ̃ =∆

ζ

ρAωn

=
ζ√
ρAEI

√√√√ ∫ l

0
X2

n(x)dx∫ l

0
[X ′′

n(x)]
2dx

(39)

δ =∆
E
[ ∫ l

0
[X ′

n(x)]
2dx

]2
2ρl

∫ l

0
X2

n(x)dx
(40)

Moreover, let us define

T (t) =∆
P (t)

ξ
; ξ =∆

ωn√
δ
; τ =∆ tωn (41)

Using the normalization technique shown, the equation can be written in the form
d2T

dτ 2
+ 2ζ̃

dT

dτ
+ T + T 3 =

1

ω2
nξ

[
A cos

(
ωd

ωn

τ

)
+ ψ((un(x, t))

]
Xn(x0) (42)

Now, we can take the function Xn(x) for the first mode and actually calculate all
of the constants mentioned (with use of the beam’s physical parameters) but we
can alternatively determine the constants of damping, driving and control inde-
pendently and thus forego brute-force calculation. To do so we’ll define

AXn(x0)

ω2
nξ

=∆ Φ ;
Xn(x0)

ω2
nξ

=∆ Ω (43)

So the final dynamics equation is
d2T

dτ 2
+ 2ζ̃

dT

dτ
+ T + T 3 = Φcos

(
ωd

ωn

τ

)
+ Ωψ(un(x, t)) (44)
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4.2.2 Determining the Control Function

The control function now has to be determined for it to maintain the beam in a
limit cycle as detailed in the theoretical background. Let us consider the function
for the n’th mode

ψ(un) =
Γ

Ω

u̇n
|u̇n|

=
Γ

Ω

u̇n
|u̇n|

=
Γ

Ω

˙P (t)X(x)∣∣∣ ˙P (t)X(x)
∣∣∣ = Γ

Ω

˙P (t)∣∣∣ ˙P (t)
∣∣∣ = Γ

Ω

dT
dτ∣∣dT
dτ

∣∣ (45)

as we assumed that for the first mode, the beam does not bend in the negative
direction of the x axis. We will show that the following function effectively cancels
the damping effect and maintains the beam in constant vibration [19]. To do so,
we’ll leave out the driving and look at the dynamics equation with the control only

d2T

dτ 2
+ 2ζ̃

dT

dτ
+ T + T 3 = Γ

dT
dτ∣∣dT
dτ

∣∣ (46)

We’d like to calculate the work done by the system, meaning by definition to
evaluate

W =

∫ T

0

F⃗ · d⃗x =

∫ T

0

F⃗ · d⃗x
dt

dt =

∫ T

0

F⃗ · ˙⃗x dt (47)

where F⃗ is the external force acting upon the system, x⃗ is the position vector
(which is T⃗ in our case) and x is the coordinate in which the work is done and T
is the total time interval. We assume the force is in the x direction and we’d like
to express it in terms of T (t). We can look at the system as a simple dynamical
system (one with a second derivative and liner terms) that the damping, control
and duffing function acting upon it as external forces and then

d2T

dτ 2
+ T = Γ

dT
dτ∣∣dT
dτ

∣∣ − 2ζ̃
dT

dτ
− T 3 = F

(
T,
dT

dτ

)
(48)

Let us now assume the solution for T (τ) in the steady-state is a simple sinusoidal
with a constant amplitude of the form T (τ) = asscos(τ) where ass is the steady-
state amplitude, and define the work in terms of T (τ)

W =

∫ T

0

F

(
T,
dT

dτ

)
Ṫ dt =

∫ T

0

F

(
T,
dT

dτ

)
dT

dt
dt =

=

∫ T

0

F

(
T,
dT

dτ

)
dT

dτ

dτ

dt
dt =

∫ 2π

0

F

(
T,
dT

dτ

)
dT

dτ
dτ

(49)
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Plugging F and T we get

W =

∫ 2π

0

[
Γ

dT
dτ∣∣dT
dτ

∣∣ − 2ζ̃
dT

dτ
− T 3

][
− asssin(τ)

]
dτ =

= −ass
∫ 2π

0

[
Γ
−asssin(τ)
|−asssin(τ)|

+ 2ζ̃asssin(τ)− a3sscos
3(τ)

]
sin(τ) dτ =

= −ass
∫ 2π

0

[
− Γ

sin(τ)

|sin(τ)|
+ 2ζ̃asssin(τ)− a3sscos

3(τ)

]
sin(τ) dτ =

assΓ

∫ 2π

0

sin2(τ)

|sin(τ)|
dτ − 2a2ssζ̃

∫ 2π

0

sin2(τ) dτ + a4ss

∫ 2π

0

cos3(τ)sin(τ) dτ

(50)

Let us note that the third term is an integral on a multiplication of an odd function[
sin(τ)

]
and an even one

[
cos3(τ)

]
which results in an odd function. The integral

is over a complete interval of these trigonometric functions, and is therefore 0. Now
let us evaluate the first term

assΓ

∫ 2π

0

sin2(τ)

|sin(τ)|
dτ = assΓ

∫ π

0

sin(τ) dτ − assΓ

∫ 2π

π

sin(τ) dτ =

= 2assΓ + 2assΓ = 4assΓ

(51)

Now the second term is

−2a2ssζ̃

∫ 2π

0

sin2(τ) dτ = −2a2ssζ̃

∫ 2π

0

1− cos(2τ)

2
dτ = −2a2ssπζ̃ (52)

Now in order for the damping to fade, we need to total work of the system to be
zero, meaning that the whole term has to equal to 0

4assΓ− 2a2ssπζ̃ = 0 → ass =
2Γ

πζ̃
(53)

when B is the steady state amplitude that will result in our model. So the final
equation with forcing will be

d2T

dτ 2
+ 2ζ̃

dT

dτ
+ T + T 3 = Φcos

(
ωd

ωn

τ

)
+ Γ

dT
dτ∣∣dT
dτ

∣∣ (54)

4.3 Reduction of the Duffing Equation to the Slow Evolu-
tion Model

Though we can solve the Duffing equation with numerical methods, the main prob-
lem with the final equation shown in the previous section is that it does not admit
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an exact analytic solution. In the special, more simple scenario in which the beam
is undamped and undriven - an exact solution can be obtained using Jacobi’s ellip-
tic functions. However, these type of functions, defined using the complex plane,
require a high degree of knowledge and are not easily dealt with. Moreover, we have
both damping and driving in our equation. So alongside a numerical simulation
we can perform on the equation, a different solution to the problem is suggested
which is the Slow Evolution model - of the form T (τ) = a(τ) cos [ωd

ωn
τ + θ(τ)] - one

that describes the time-dependant function as a multiplication of an amplitude
a(τ) with a periodic component cos [ ωd

ωn
τ + θ(τ)] that is composed of the frequency

ratio ωd

ωn
and a function of the phase θ(τ) we call the biased oscillator phase. This

phase function is dependent a solution to Adler’s equation and it describes the
phase pull with respect to time. The functions that describe the phase and am-
plitude are found with that is called the slow evolution equations. So, under that
assumption, in order for us to actually propose a solution to eq. 37, we first have
to find a(τ) and θ(τ). These two functions can be found after solving two cou-
pled differential equations that are established due to several assumptions made
in Shoshani’s article on the matter [1]

ȧ =
2Γ

π
− ζ̃a− Φ sin (θ) (55)

θ̇ = ∆ω +
3ωn

8ωd

a2 − Φ

a
cos (θ) (56)

where the dot operator denotes a derivative with respect to τ , ∆ω = 1 − ωn

ωn
and

∆ω ≪ 1. We can see that in the absence of the external signal (Φ = 0), the
closed-loop oscillator has a stable limit-cycle with an amplitude of ass = 2Γ

πζ̃
, which

describes the condition for which the loop dynamics sustains the isolated oscillator
- as mentioned earlier. Note that the resonator considered in this work is assumed
to operate in an amplitude range for which a weakly nonlinear model holds, and
while the resonator in the experimental device has a hardening nonlinearity (the
Duffing parameter is larger than 0), the analysis presented is also applicable for a
resonator with a softening nonlinearity.

4.4 Solution Layout
The main idea in solving the equations in the case where an external forcing exists
is relying on the assumption that the external signal is small in comparison with
the closed-loop gain . Thus, we can assume that the perturbed amplitude is given
by

a(τ) = ass + ϵr(τ) +O(ϵ2) =
2Γ

πζ̃
+ ϵr(t) +O(ϵ2) (57)

21



where ϵ ≪ 1. Plugging into equation 55 we get the following governing equation
for the amplitude perturbation away from ass

ṙ = −ζ̃r − Φ

ϵ
sin(θ) (58)

One can see that in contrast to the phase dynamics, dissipation is explicitly present
in the amplitude dynamics. Hence, perturbations of the amplitude decay relatively
rapidly. This point can also be seen from the free-running oscillator equations.
Consequently, one can assume that the amplitude is following the phase, meaning
ṙ ≈ 0. Using this result, one gets

r(τ) = −Φ

ϵζ̃
sin(θ) (59)

Plugging into eq. 57 we get the perturbed amplitude

a(τ) =
2Γ

πζ̃
− Φ

ζ̃
sin(θ) +O(ϵ2) (60)

From here on out, we define the biased oscillator phase as ϕ = θ + θ0 where
tan (θ0) = 1

3
ωd

ωn

ζ̃3π2

Γ2 , which represents the phase difference between the external
signal and the oscillator, as elaborated before. Plugging eq. 60 into eq. 56,
neglecting terms of O(ϵ2) and retaining terms up to O(ϵ) yields an approximated
Adler equation for ϕ given by

ϕ̇ ≈ ∆ω′ −B sinϕ (61)

where

• ∆ω′ = ∆ω + 3
2
ωn

ωd

Γ2

π2ζ̃
is the frequency offset

• B = Φ
ass

[
1 +

(
3ωn

ωd

Γ2

ζ̃3π2

)2
] 1

2

= Φ ζ̃π
2Γ

√
1 + cot2(θ0) =

Φ
sin(θ0)

ζ̃π
2Γ

is the mean phase modulation amplitude

So after much work this problem reduces to solving the Adler equation.

4.5 Adler Equation’s Potential Function
The point of interest in near the bifurcation, that occurs when |K| =

∣∣ B
∆ω′

∣∣ = 1,
from the direction where

∣∣ B
∆ω′

∣∣ > 1, where there’s no phase locking and harmonic
beats occur. So we look for points that live up to

lim
| B
∆ω′ |→1+

ϕ(t) (62)
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Those points have a specific characteristic that make the beam enter SNIC bifur-
cation and produce the desired frequency comb. Adler’s equation can be seen as
a dynamics equation where the mass term was neglected. Let us rewrite it in the
form

ϵϕ̈+ ϕ̇ = ∆ω′ −B sinϕ (63)
where ϵ≪ 1

B
. One can see that the RHS corresponds to the term of the sum of the

forces in Newton’s Second Law. Let us remember that the potential of a system
is defined as

U = −
∫ n∑

i=1

F⃗i · d⃗r (64)

Using this on the RHS in eq. 63

U(ϕ) = −
∫
f(ϕ)dϕ = −

∫
[∆ω′ −B sinϕ]dϕ = −∆ω′ϕ−B cosϕ (65)

This result is what is knows as a ”washboard potential” for it is a function that has

Figure 4.2: Illustration of washboard potential for different values of K and B = 80

a harmonic term (usually due to gravity in potential function) and an additional
linear term, both being negative - so as the constant ∆ω′ increases, the graph
of the function rotates clockwise and therefore resembles an inclined washboard,
while the coefficient of the cosine function - B determines the amplitude of the
”wave” of the function. Figure 4.2 illustrates the behaviour of the washboard
potential function As one can see, these two parameters define K. The analogy
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to a washboard rests in that as the slope of the washboard potential is not very
steep, a particle flowing through it can be trapped in one of the local minima in
the washboard potential. In our discussion this is analogous to a state of injection
locking - as in one oscillator can lock into another’s frequency and therefore be
”trapped” by it. As the slope increases (meaning it becomes more steep) - the
”flow” down the potential curve becomes more evident, which means physically
that a there’s not enough coupling to trap the oscillator and it can oscillate in its
frequency freely. We look for a bifurcation from values of K that obey equation
62 - we wish to look for smaller and smaller values of K from values larger than
1 - that correspond to greater values of B and more importantly - smaller values
of ∆ω′ - meaning smaller values of the two oscillators frequency difference. An

Figure 4.3: Illustration of the Three Washboard Points

additional illustration of the washboard is given in figure 4.3 - where the three
points of bifurcation appear clearly - the first where ∆ω′ < 1 and there are two
equilibrium values, one stable (the black one) and one not (the white one), the
point where both values coincide and create one quasi-stable value that incites the
bifurcation, and a third where there’s no equilibrium value, the coupling decreases
and the oscillator oscillates freely. The code for the washboard potential simulation
is given in appendix 8.4.2.

4.6 Solving Adler’s Equation
The equation is an ordinary differential non-linear equation that can be solved
numerically, though an analytical solution is surprisingly possible. The layout for
the solution is added to appendix no. 3. The final solution for the phase shift ϕ is
of the form

ϕ(t) = 2 arctan

[
1 +

√
K2 − 1 tan

[
B
√
K2−1
2

(t− t0)
]

K

]
(66)

When t0 is the integration constant. This equation in fact, describes the phase
rotation of the oscillator at a given instant. Simplifying a third assumption made
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by Adler, the condition for synchronization can be expressed mathematically as
|K| < 1.

5 Simulations
In this section, we perform numeric simulations on the equations detailed in earlier
sections. There are many equations that were mentioned and we can perform
numerous analyses on each one of them, but we’d like to ultimately concentrate
on the desired result - being the graphical solution producing the frequency comb.
So we’d like to simulate several equations we derived in the previous chapters.
These simulations will be done gradually to ultimately lay the foundations for
the extraction of the frequency comb. All of the simulations were done using the
MATLAB® numerical computing environment and its add-on interface Simulink
®. All of the codes were added as appendices.

5.1 The Beam’s Spatial Function
A mentioned earlier, the beam’s displacement is described by a multiplication
of a temporal function of time and and another spatial function of the spatial
coordinate x. The function of x was fully determined for the first mode and was
shown in equation 35, where a change of variables described the function as of a
variable s. A simulation of the function was conduced and the results are shown
in figure 5.1. The code is added in appendix 8.4.3.

Figure 5.1: The Spatial Function X(s)

25



5.2 The Beam’s Temporal Function
The temporal dynamics of the beam was derived up to a final normalized equa-
tion for the dimensionless time τ shown in equation 54. This equation can be
represented by a Simulink model as illustrated in figure 5.2. Note that the ”dot”

Figure 5.2: Simulink Model of the Duffing Equation

notation denotes a derivative with respect to the normalized time τ . This model
can actually solve the non-linear Duffing equation numerically and produce the
function T as a function of the normalized time τ . This simulation purpose is
to verify that the control function as mentioned does restrain the system to the
steady-state amplitude and causes it to vibrate steadily after sufficient amount of
time. To visualize this, a low quality factor was chosen to ensure large damping
and quick convergence to the steady-state. Furthermore, as explained in the hy-
pothesis, this model was built on the assumption that the dominant term in the
Duffing equation is the linear term, thus the non-linear terms in the equation are
in charge of applying the wanted tweaks to make the system behave as wanted.
Due to this assumption, we can say that the dynamics of the actual beam with
respect to the dimensional time will be similar to what the dimensionless model
depicts, up to a multiplication by some constant. Mathematically, this assumption
leads to the conclusion that the following relation must hold

T 3(τ) ≪ T (τ) (67)
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Due to this conclusion, we must have that the steady-state is smaller than 1.
Therefore the control effort was chosen as Γ = 1

4Q
. By the relation given in

equation 53 the steady-state amplitude has to be

ass =
2Γ

πζ̃
=

ζ̃= 1
2Q

4ΓQ

π
=

Γ= 1
4Q

1

π
≈ 0.318 (68)

The simulation code is given in appendix 8.4.4 and the results are shown in figure
5.3.

Figure 5.3: Simulation for T (τ) Steady State Amplitude

5.3 The Beam’s Dynamics Phase Portrait
The model of the temporal function for the beam performed two integration oper-
ations on the second derivative of the time function, so we got the function itself
and its derivative with respect to τ . Note that the beam was given an initial per-
turbation it’s velocity with a value of 0.01 and the initial position was set to zero.
With these two function in time, we can look at the phase portrait of the system,
hoping that it will display the limit cycle we wish for. The phase portrait of the
system is displayed in figure 5.4 and the code is displayed in appendix 8.4.5.
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Figure 5.4: Phase Portrait of the System

5.4 The Beam’s Complete Vibration
After obtaining both the spatial and temporal functions of the vibration of the
beam, these functions can then be multiplied to result in the complete function of
vibrations for the beam. Since it is a function of two variables, simulation is possi-
ble by extraction of an animation of the beam. This is done by iteratively plotting
frames of the beam’s location on the spatial coordinate and running through the
simulation time. This animation is shown in the presentation of this project while
a sample is shown in figure 5.5 and the code is given in appendix 8.4.6.

Figure 5.5: A Sample of Half of a Complete Vibration of the Beam
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5.5 The Frequency Comb
Generation of the frequency comb can be achieved by solving Adler’s equation to
get the phase as a function of time and then calculate the solution’s Fourier Trans-
form, that transforms the function to the complex plane, in order to obtain the
gain of the phase as a function of frequency. Then, in the range of values keeping
up with the condition equation 62 defines, the comb will hopefully appear. We will
perform numerical simulations in order to try and obtain actual solutions to the
model of the beam (with forcing and control) that was presented and then check
their correlation to the results obtained in this section, by actually deriving the
equation for the vibration of the beam. Using the solution to Adler’s equation,
one can experiment using actual analytical analysis. In the context of the assump-
tion made earlier, several simulations were made in order to witness the desired
behaviour graphically. A Matlab function was written for this purpose, which is
added to appendix no. 8.4.7. The function allows to run multiple simulations for
different values of K and B. In this report, simulation results for 3 values of B -
3,4 and 5 (which were chosen so as we assumed that the B parameter was relatively
small and in the range of a few units) were taken. The K parameter was checked
in 6 different sets of values, presented in table no. 5.1. Each iteration produced
a graph for the phase ϕ(t) as a function of time, where the time series was taken
in a interval of 100 seconds, divided into increments of 0.1 seconds. Finally, each
iteration produced a graph for the absolute value of the Discrete Time Fast Fourier
Transform of the phase signal - as a function of frequency. This method utilizes
an algorithm to compute the Fourier Transform for discrete samples in a fast way.
The table of values and the first iteration are presented in the next page.

Table 5.1: Table of values for K

Iteration Values for K

1 {10, 9, 8, 7, 6, 5, 4, 3, 2}
2 {2, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2}
3 {1.1, 1.09, 1.08, 1.07, 1.06, 1.05, 1.04, 1.03, 1.02}
4 {1.01, 1.009, 1.008, 1.007, 1.006, 1.005, 1.004, 1.003, 1.002}
5 {1.001, 1.0009, 1.0008, 1.0007, 1.0006, 1.0005, 1.0004, 1.0003, 1.0002}
6 {1.0001, 1.00009, 1.00008, 1.00007, 1.00006, 1.00005, 1.00004, 1.00003, 1.00002}
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5.5.1 Iterations for B = 3

(a) Time Domain

(b) Frequency Domain

Figure 5.6: Iteration 1 for B = 3
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(a) Time Domain

(b) Frequency Domain

Figure 5.7: Iteration 2 for B = 3

31



(a) Time Domain

(b) Frequency Domain

Figure 5.8: Iteration 3 for B = 3
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(a) Time Domain

(b) Frequency Domain

Figure 5.9: Iteration 4 for B = 3
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(a) Time Domain

(b) Frequency Domain

Figure 5.10: Iteration 5 for B = 3
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(a) Time Domain

(b) Frequency Domain

Figure 5.11: Iteration 6 for B = 3
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5.5.2 Iterations for B = 4

(a) Time Domain

(b) Frequency Domain

Figure 5.12: Iteration 1 for B = 4
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(a) Time Domain

(b) Frequency Domain

Figure 5.13: Iteration 2 for B = 4
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(a) Time Domain

(b) Frequency Domain

Figure 5.14: Iteration 3 for B = 4
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(a) Time Domain

(b) Frequency Domain

Figure 5.15: Iteration 4 for B = 4
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(a) Time Domain

(b) Frequency Domain

Figure 5.16: Iteration 5 for B = 4
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(a) Time Domain

(b) Frequency Domain

Figure 5.17: Iteration 6 for B = 4
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5.5.3 Iterations for B = 5

(a) Time Domain

(b) Frequency Domain

Figure 5.18: Iteration 1 for B = 5
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(a) Time Domain

(b) Frequency Domain

Figure 5.19: Iteration 2 for B = 5

43



(a) Time Domain

(b) Frequency Domain

Figure 5.20: Iteration 3 for B = 5
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(a) Time Domain

(b) Frequency Domain

Figure 5.21: Iteration 4 for B = 5
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(a) Time Domain

(b) Frequency Domain

Figure 5.22: Iteration 5 for B = 5
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(a) Time Domain

(b) Frequency Domain

Figure 5.23: Iteration 6 for B = 5
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6 Observations and Conclusions
This section lists the conclusions made based on the theoretical and numerical
analyses made.

• As we can see from the beam’s spatial function simulation, the beam bends
in the upward direction by a normalized amount of 1 - a result that matches
our model, as discussed. We deduce that the function we got is then valid
for this model and correlates well to the actual behaviour of the beam.

• As we can see from the Beam’s temporal function simulation, the beam
amplitude in time does converge to a value of ass = 1

π
in the steady state

and stays there over a large amount of time, as we predicted in the theory. We
then conclude that the Simulink model does describe well the time dynamics
of the beam.

• As we can see from the Beam’s beam’s phase portrait simulation, the beam
does converge to a steady limit cycle with an amplitude of ass = 1

π
,as

predicted in the theory and illustrated in the temporal function. We then
conclude that the control law is then valid and the derivative with respect
to τ does also correlate to the predicted behaviour.

• As it shows in the simulation results for the comb and specifically in the last
ones, as the time signal becomes less dense in smaller set values of iteration,
the gain in the frequency domain lowers and one can clearly see a frequency
comb forming for the last iterations. These results match our theory, for the
values of the penultimate and last iterations are very close to the point of
the SNIC bifurcation, in which we predicted that the frequency comb will
appear clearly. So, from that point of view, we conclude that in order to
render a comb we would like our actual beam model to be as close as possible
to the actual bifurcation values, as long as the beam can still withhold the
situation.

• The responsibility for capturing the SNIC bifurcation rests in the hands of
the controller we added to the system, and the simulation results matched
the theory even though we took a linear control model - meaning that linear
control tools are applicable in the steady state for the parameters chosen.

• Based on the simulation results, we can conclude that Adler’s equation not
only fits theoretically as an analytic equation, but is also a fitting model to
incite the desired outcome.

• The penultimate iteration displays a very dense comb, one that includes
a very large spectrum of frequencies, that is favorable for the applications
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requiring the comb in the first place. The last iteration displayed a single
curve that corrupted the comb, as in that iteration the values are too close
to 1, and we assume that this behaviour is present due to the system’s
singularity in this point, as discussed in the theoretical background.

• We see that increasing the parameter B causes the spaces between the
frequencies to increase and the whole comb to spread out An animation of
this behaviour will be displayed in the presentation, and in that one can
see that the tweaking B causes the whole system to produce frequencies in
different wave-like forms. We assume that this correlates to the fact that this
parameter’s value is a function of all of the physical sizes we discussed in
this project, and thus a change by a normalized unit causes concrete visible
changes. We conclude that the resulting comb we would want to produce
with the beam would require specific parameters values and thus this has to
be taken into consieration.

• Looking at the simulation results, we also see that the time and frequency
response of even such a simple model still demonstrate very rapid and sharp
changes. Thus, we can conclude that the model is very sensitive to changes
in phase, typically near values of bifurcation, and we predict that this will
have to be taken into consideration in the future with the suggest model we
would introduce.

• Due to the properties of the SNIC bifurcation, meaning the fact that its
period is infinite at the point of bifurcation, we cannot lock into a specific
theoretical point in the phase space and call it our desired target, thus we
also conclude that our aim is to get a close enough approximation to the
desired output, one that will serve a suitable result for this study’s problem.

• As mentioned numerous times, the frequency comb is generated due to
the behaviour of the phase, which meant that the phase is the cause for
the bifurcation. We saw that this assumption holds as we predicted in the
theory.

• As the simulation results show, the frequency response is pretty hectic. We
can predict that these results have to be improved in order for us to get
a realistic result. Possible future plans for the continuation of this project
can be to set up the simulation using different values, or alternatively use a
analytical expression derived for this special matter by Steven W. Shaw [21],
that will undoubtedly provide better results.
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7 General Evaluation
In this report, an elaborate discussion regarding a vibrating beam with non-linear
dynamics was presented. The aim of this project was to excite the beam using
external forcing and closed-loop feedback control in order to reach a state of SNIC
bifurcation in the dynamical system that will hopefully produce a frequency comb
from the vibrations of the beam. Starting with the stand-alone non-linear beam
model, an initial mathematical formulation of the problem was investigated for the
case in which the beam is externally perturbed and controlled - one that resulted
in the non-linear Duffing equation. It is worth mentioning that the resulting
equation contains constants that have not been determined for a specific beam
with actual physical parameters. In that context, the project aimed to provide
insight in the world of MEMS even though a general model was presented. To
actually use this model, the system’s parameters have to be set either by taking
their value from literature tables or alternatively by calculating them using a Finite
Elements Simulation software or other physical simulation tools. We saw that the
forced, damped Duffing equation is impossible to solve analytically and therefore
a more subtle model was used to obtain a set of equations that produced the
solution for the vibrations of the beam - which is composed out of an amplitude
and phase functions. This model takes the forcing and control of the beam into
consideration. We saw that the phase function in our model can be presented in
the form of Adler’s equation and realized that this function is responsible for the
formulation of the desired frequency comb. Simulations on the governing temporal
and spatial equations of the beam were performed and all the theory presented in
the background matched the results of the simulations, which was a good indication
that the model is valid for analysis in the case presented. Ultimately, the main
goal was achieved by conducting a simulation of Adler’s equation to imitate the
SNIC bifurcation behaviour to produce the desired entity - a frequency comb.
The final simulation results also matched the theory, in that the SNIC bifurcation
renders a frequency comb that was captured well at the penultimate iteration. To
conclude, a firm theoretical layout of the problem was presented, all simulations of
the desired outcomes matched our theory and a we can say that we have a model
that is somewhat applicable for MEMS and other systems, noting that one have
to define specification for specific desired frequency combs. Future plans can be to
try this model experimentally and check the correlation of the experiment’s results
with the model shown.

50



8 Appendices
8.1 Derivation of the Adler Equation8

The Adler equation describes the case of synchronization at its steady state - in
which phase difference between oscillator and external signal is constant, being
when all transient behaviours vanish in time. Other than that, when no synchro-
nization occurs, the equation gives frequency and wave form of the beat note -
periodic variations of frequency and amplitude. To do so, the equation contains
a parameter which decides whether or not the transient term will vanish in time,
thus producing an equivalent to the criteria for synchronization derived by other
methods. The equation assumes that there are no aftereffects from different con-
ditions which may have existed in the past. This simplifies the equation to a fair
extant, but is applicable under specific conditions. Adler described those in detail
in his article and went on to derive the equation using a model of two RCL circuits
- a circuit that includes a resistor, capacitor and an inductor.

Figure 8.1: Two RCL circuits

• R is a resistor

• C is a capacitor

• L is an inductor

• E is the voltage induced in grid coil

• E1 is the voltage of impressed signal

• Eg is the resultant grid voltage

• EF is the voltage across plate load
8All figures in this appendix are from Adler’s article
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Using the RCL circuit - the Adler equation relates to voltages in the circuit
and their frequency of osculation in the branches of the circuit. This section will
show the derivation of the equation as was shown by Adler in his article. Let the
picture shown in fig. 8.1 be a vector representation of the voltages in the grid
circuit as they are found at a given instant.

Figure 8.2: Voltages in the grid circuit

Where

• α is the angle between the induced voltage and the impressed signal

• ϕ is the phases shift

Let E1 be a vector at rest with respect to our eyes. Any such vector will
symbolize an angular frequency ω1 - that of the external signal. A vector rotating
clockwise with an angular velocity of dα

dt
shall represent an angular frequency of

ω = ω1 +
dα
dt

, or angular beat frequency of

∆ω = ω − ω1 =
dα

dt
(69)

relative to the external signal. With no external signal impressed, Eg and E
must coincide: the voltage E returned through the feedback circuit must have the
same amplitude and phase as the voltage E applied to the grid. Those nonlinear
elements which limit the oscillator amplitude will adjust the gain so that |E| = |Eg|
but the phase can only coincide at one frequency, the free-running frequency ωo.
At any other frequency the plate load would introduce phase shift between Eg and
E. Fig. 8 shows a phase shift versus frequency graph for a single tuned circuit as
assumed in fig. 6

Let now an external voltage E1 be introduced, and let fig. 7 represent the
voltage vectors at a given instant during the beat cycle. Evidently, the voltage
E returned through the feedback circuit is now no longer in phase with the grid
voltage Eg, the diagram shows E lagging behind Eg by a phase angle ϕ. No such
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Figure 8.3: Phase versus frequency for a simple tuned circuit

lag could be produced if the oscillator were still operating at its free frequency ωo,
meaning that the frequency at this instant exceeds ωo by an amount which will
produce a lag equal to ϕ in the plate circuit. With E1 ≪ E taken as an assumption
by Adler for the validity of his argument - inspection by simple trigonometry of
fig. 7 yields

ϕ(α) =
E1 sin (−α)

E
= −E1

E
sin (α) (70)

Another condition taken by Adler is that the pass band of the plate circuit is
so wide that all frequencies are near its center, so only a small central part of the
curve of ϕ vs. ω is taken into consideration, one that approaches a straight line
with a slope of

A =
dϕ

dω
(71)

Then, one can take a general linear curve function and apply it to an arbitrary
phase angle as a function of another frequency [ϕ(ω) = mω + n]. Taking m = A,
ϕ(ω0) = 0, and setting ∆ω0 = ω0 − ω1 we get

ϕ(ω) = A(ω − ω0) = A[(ω − ω1)− (ω0 − ω1)] = A(∆ω −∆ω0) (72)
Plugging in eq. 18 to the RHS and eq. 19 to the LHS we get

−E1

E
sin (α) = A

(
dα

dt
−∆ω0

)
(73)

Dividing by A and setting B = E1

E
· 1
A

we finally obtain Adler’s equation

dα

dt
= −B sin (α) + ∆ω0 (74)

Setting K = ∆ω0

B
we finally get
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dα

dt
= B[K − sin (α)] (75)

8.2 Complete Solution to the Beam PDE
This appendix will show the complete solution to the beam’s PDE for the temporal
and spatial functions. After plugging un(x, t) into equation 22 we can solve the
equation for the spatial and temporal functions

ρA ¨Pn(t)Xn(x) + 2ζ ˙Pn(t)Xn(x)−

−EA
2l

∫ l

0

[
Pn(t)X

′
n(x)

]2
dx · Pn(t)X

′′
n(x) + EIPn(t)X

′′′′
n (x) =

=
[
A cos (ωdt) + ψ[Pn(t)Xn(x)]

]
δ(x− x0)

(76)

Rearranging [
ρA ¨Pn(t) + 2ζ ˙Pn(t)

]
Xn(x)−

−EA
2l

∫ l

0

[
X ′

n(x)
]2
dx ·X ′′

n(x) · P 3
n(t) + EIPn(t)X

′′′′
n (x) =

=
[
A cos (ωdt) + ψ[Pn(t)Xn(x)]

]
δ(x− x0)

(77)

To solve for the spatial function Xn(x), one takes the homogenous equation and
set τ = 0 to yields a linear equation that produces a solution for the eigenfunctions
Xn(x) [

ρA ¨Pn(t) + 2ζ ˙Pn(t)
]
Xn(x) + EIPn(t)X

′′′′
n (x) = 0

→ ρA ¨Pn(t) + 2ζ ˙Pn(t)

Pn(t)
= −EIX

′′′′
n (x)

Xn(x)

(78)

assuming Pn(t), Xn(x) ̸≡ 0 ; ∀n. It can be seen that the RHS is a function of t
alone and the LHS is a function of x alone. This is possible if and only if both sides
are equal to a constant λn for the n’th mode. So this bring us to a characteristic
ordinary differential equation for the eigenfunctions Xn(x)

X ′′′′
n (x) +

λn
EI

Xn(x) = 0 (79)

And also for Pn(t)

¨Pn(t) +
2ζ

ρA
˙Pn(t)−

λn
ρA

Pn(t) = 0 (80)
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8.2.1 The Separation Constant λn
We now have to discuss of the value of λn, named the separation constant. This
constant is assumed to be real, as in with a zero imaginary component, due to the
problem being self adjoint. This mathematical concept is relatively complex and
is not in the scope of this project. So. if the constant is zero, then we’ll get

¨Pn(t) +
2ζ

ρA
˙Pn(t) = 0 (81)

Taking Pn(t) = eµnt yields an algebraic equation for the eigenvalues µn with respect
to time

µ2
n +

2ζ

ρA
µn = 0 → µn1 = 0 ; µn2 = − 2ζ

ρA
(82)

As known, these two values for α represent the eigenvalues that correlate to the
appropriate eigenvectors that constitute a base for the vector space of the solutions
for Pn(t)

Pn(t) = Ane
µn1 +Bne

µn2 = An +Bne
− 2ζ

ρA (83)
This solution is asymptotically static (as limt→∞ Pn(t) = An) and therefore is not
in our interest. Now, if λn > 0 we’ll get

¨Pn(t) +
2ζ

ρA
˙Pn(t)−

|λn|
ρA

Pn(t) = 0 (84)

Taking Pn(t) = eµnt again

µ2
n +

2ζ

ρA
µn −

|λn|
ρA

= 0 → µn1,2 =
− 2ζ

ρA
±
√(

2ζ
ρA

)2
+ 4 |λn|

ρA

2
> 0 (85)

It can be seen that the eigenvalues are positive and therefore the time solution
diverges, which is physically unacceptable. Taking λn < 0 we’ll get

µ2
n +

2ζ

ρA
µn +

|λn|
ρA

= 0 → µn1,2 =
− 2ζ

ρA
±
√(

2ζ
ρA

)2 − 4 |λn|
ρA

2
< 0 (86)

These eigenvalues are both negative and therefore the solution converges in this
case. This means that λn has to be negative due to consideration of finite energy.
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8.2.2 Eigenvalues for the Spatial Coordinate

We’d like to find the eigenvalues for the spatial coordinate. Taking Xn(x) = eµnx

and plugging into equation 79 yields an algebraic equation for the eigenvalues µn

with respect to the x coordinate

µ4
n −

|λn|
EI

= 0 → {µn} = {αn,−αn, αni,−αni} (87)

where αn = 4

√
λn

EI
. The solution then will be

Xn(x) = Ane
αnx +Bne

−αnx + Cne
αnxi +Dne

−αnxi (88)

Recall Euler’s formula
eiθ = cos(θ) + i sin(θ) (89)

And the definition of the hyperbolic functions

sinh(x) =
ex − e−x

2
; cosh(x) =

ex + e−x

2
(90)

Using these two, we can rearrange equation 88 to the form

Xn(x) = Ãn sinh(αnx) + B̃n cosh(αnx) + C̃n sin(αnx) + D̃n cos(αnx) (91)

When the constants Ãn, B̃n, C̃n, D̃n are determined using the boundary conditions
formulated in equation 23. Plugging these, we get a set of 4 linear equations for
the constants.

8.2.3 Boundary Conditions for the Suggested Solution

The boundary conditions formulated in equation 23 can be applied to the suggested
solution of variable separation for the n’th mode

un(0, t) = 0 → Xn(0)Pn(t) = 0 → Xn(0) = 0 (92)

as we assume that ¬(Pn(t) = 0 ; ∀t) ≡ ∃ti (Pn(ti) ̸= 0) - meaning Pn(t) is not zero
for all t. As for the rest of the boundary conditions:

u(l, t) = 0 → Xn(l)Pn(t) = 0 → Xn(l) = 0

∂u

∂x
(0, t) = 0 → X ′

n(0)Pn(t) = 0 → X ′
n(0) = 0

∂u

∂x
(l, t) = 0 → X ′

n(l)Pn(t) = 0 → X ′
n(l) = 0

(93)
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These conditions can be plugged into equation 91 to yield the following set

B̃n + D̃n = 0

αnÃn + αnC̃n = 0

Ãn sinh(αnl) + B̃n cosh(αnl) + C̃n sin(αnl) + D̃n cos(αnl) = 0

Ãn sinh(αnl) + B̃n cosh(αnl) + C̃n sin(αnl) + D̃n cos(αnl) = 0

αnÃn cosh(αnl) + αnB̃n sinh(αnl) + αnC̃n cos(αnl)− αnD̃n sin(αnl) = 0

(94)
Plugging the first two equations into the last ones we get a new set of two equations
for C̃ and D̃ that can be expressed in matrix form[

sin(αnl)− sinh(αnl) cos(αnl)− cosh(αnl)
cos(αnl)− cosh(αnl) − sin(αnl)− sinh(αnl)

] [
C̃n

D̃n

]
=

[
0
0

]
(95)

This is a homogeneous set of linear equations that has a non-trivial solution if and
only if the determinant of the coefficients matrix is zero (meaning actually that
the equations are linearly dependant) and therefore we can calculate

−
[
sin(αnl)− sinh(αnl)

][
sin(αnl)+sinh(αnl)

]
−
[
cos(αnl)−cosh(αnl)

]2
= 0 (96)

Simplifying

sin2(αnl)− sinh2(αnl) + cos2(αnl)− 2 cos(αnl) cosh(αnl) + cosh2(αnl) = 0 (97)

Let us look at two of the following hyperbolic identities

sinh2(x) =
cosh(2x)− 1

2
; cosh2(x) =

cosh(2x) + 1

2
(98)

Plugging these two and arranging we get the final characteristic equation of the
beam

cos (αnl) cosh (αnl) = 1 (99)

8.3 Layout for Solving Adler’s Equation
Adler’s equation corresponds, using separation of variables, to solving the integral∫

dα

K − sin (α)
= B

∫ t

t0

dt′ (100)

The RHS is easy but the LHS is less so. It can be solved analytically using an
integration technique called the tangent half-angle substitution - taking s = tan (α

2
)
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and solving for S.
Let then

ds =
dα

2 cos2 (α
2
)

(101)

Based on that substitution, one can draw a triangle of the form

s

1

√
s2 + 1

α
2

So it shows that

sin
(α
2

)
=

s√
s2 + 1

(102)

cos
(α
2

)
=

1√
s2 + 1

(103)

Pluggint into eq. 29 one gets

dα =
2

s2 + 1
ds (104)

Plugging into eq. 28∫ 2
s2+1

ds

K − 2 s
s2+1

= 2

∫
ds

K(s2 + 1)− 2s
(105)

Which is now solved easily enough.

8.4 MATLAB Simulation Codes
In this appendix all of the codes of the simulations ran in this project are given
according to their purpose. Each code segment represents an independent function
that can be put in a single .m file and executed. Note that the codes were written
in Matlab 2017a.

8.4.1 Code for the Beam’s Characteristic Equation Simulation

% Beam's Characteristic Equation analysis
% Shay Kricheli, 2018
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clc; clear;
fplot(@(x) cos(x)*cosh(x)-1);
grid;
axis([0 30 -5 5]);
xL = xlim; yL = ylim;
line(xL, [0 0], 'Color','black'); %y-axis
line([0 0], yL , 'Color','black'); %x-axis
h = ylabel('$cos(x)cosh(x)-1$'); set(h,'Interpreter','latex');
h = xlabel('$x$'); set(h,'Interpreter','latex');
set(gca,'fontsize',22);

8.4.2 Code for the Washboard Potential Simulation

% Washboard Potential analysis
% Shay Kricheli, 2018

clc; clear;
t = 0:0.1:50;
B = 80;
for delta = 70 : 80

h = strcat('$\Delta\omega =$ ',num2str(delta));
plot(t, -delta*t - B* cos(t),'DisplayName',h);
hold on;

end
h = legend('show','Location','northeast'); set(h,'Interpreter','latex');
h = ylabel('$U (\phi)$'); set(h,'Interpreter','latex');
h = xlabel('$\phi$'); set(h,'Interpreter','latex');
grid;
axis([0 50 -3000 0]);
print('washboard','-dmeta','-r3000') % save photo

8.4.3 Code for the Beam’s Spatial Function Simulation

% Beam Spatial Function analysis
% Shay Kricheli, 2018

clc; clear;
s = 0:0.001:4.75;
X_1 = @(s)(0.618*(sin(s)-sinh(s))-0.629*(cos(s)-cosh(s)));
plot(s, X_1(s));
grid;
axis tight;
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h = ylabel('$X(s)$'); set(h,'Interpreter','latex');
h = xlabel('$s$'); set(h,'Interpreter','latex');
set(gca,'fontsize',22);

8.4.4 Code for the Temporal Function’s Steady State Amplitude

% Beam Time Function SS Amplitude analysis
% Shay Kricheli, 2018

clc; clear;
Q = 50; %quality factor
zeta = 1/(2*Q); %damping ratio
open_system('duffing_simulation.slx'); % open the simulink model
t = 1000; % run time
gamma = 1/(4*Q); %control effort
K = 0; % driving amplitude
%perform the simulation
sim = sim('duffing_simulation','StartTime','0','StopTime',num2str(t));
T = sim.get('T');
T_dot = sim.get('T_dot');
plot(linspace(0,t,size(T,1)),T(:,1));
grid;
axis([0 num2str(t) -1 1]);
h = ylabel('$T (\tau)$'); set(h,'Interpreter','latex');
h = xlabel('$\tau$'); set(h,'Interpreter','latex');

8.4.5 Code for the Phase Space Simulation

% Beam Phase Space analysis
% Shay Kricheli, 2018

% Beam’s Complete Vibration analysis
% Shay Kricheli, 2018

clc; clear;
Q = 100; %quality factor
zeta = 1/(2*Q); %damping ratio
open_system('duffing_simulation.slx'); % open the simulink model
tau = 1000; % run time
gamma = 1/(4*Q); %control effort
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K = 0; % driving amplitude
sim = sim('duffing_simulation','StartTime','0','StopTime',num2str(tau)); %perform the simulation
T = sim.get('T');
T_dot = sim.get('T_dot');

s = 0:0.001:4.75;
X = @(s)(0.618*(sin(s)-sinh(s))-0.629*(cos(s)-cosh(s)));
Y = X(s);

plot(T(:,1),T_dot(:,1));
grid;
axis tight;
h = ylabel('$\frac{dT(\tau)}{d\tau}$'); set(h,'Interpreter','latex');
h = xlabel('$T (\tau)$'); set(h,'Interpreter','latex');
set(gca,'fontsize',22);
pbaspect([1 1 1]);

8.4.6 Code for the Complete Vibrations Simulation

% Beam Phase Space analysis
% Shay Kricheli, 2018

% Beam’s Complete Vibration analysis
% Shay Kricheli, 2018

clc; clear;
Q = 100; %quality factor
zeta = 1/(2*Q); %damping ratio
open_system('duffing_simulation.slx'); % open the simulink model
tau = 1000; % run time
gamma = 1/(4*Q); %control effort
K = 0; % driving amplitude
sim = sim('duffing_simulation','StartTime','0','StopTime',num2str(tau)); %perform the simulation
T = sim.get('T');
T_dot = sim.get('T_dot');

s = 0:0.001:4.75;
X = @(s)(0.618*(sin(s)-sinh(s))-0.629*(cos(s)-cosh(s)));
Y = X(s);
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for timeIndex=1:size(T,1)
plot(s, Y*T(timeIndex));
grid; axis([0 4.75 -0.5 0.5]);
pause (0.01);

end

8.4.7 Code for the Adler Equation Simulation

% Adelr Equation analysis
% Shay Kricheli

clc; clear;
t0 = 0;
time_series = 0:0.1:100;

for B = 3:5
RunAdler(B, time_series,t0)

end

function RunAdler (B, time_series, t0)
AdlerPlotter (10, -1 , 2 , time_series , t0, B, 1);
AdlerPlotter (2, -0.1 , 1.2 , time_series , t0, B, 2);
AdlerPlotter (1.1, -0.01 , 1.02 , time_series , t0, B, 3);
AdlerPlotter (1.01, -0.001 , 1.002 , time_series , t0, B, 4);
AdlerPlotter (1.001, -0.0001 , 1.0002 , time_series , t0, B, 5);
AdlerPlotter (1.0001, -0.00001 , 1.00002 , time_series , t0, B, 6);

end

function AdlerPlotter (start, jump , final, t, t0, B, iteration)

l = 1;
for K = start:jump: final

eta = (K^2 - 1)^(0.5);
AdlerSol{l} = 2*atan(1/K + eta/K*tan(eta*B*(t-t0)/2));
subplot(3,3,l);
plot(t,AdlerSol{l});
axis([0 100 -5 5]);
xL = xlim; yL = ylim;
line(xL, [0 0], 'Color','black');
line([0 0], yL , 'Color','black');
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grid;
h = ylabel('$\phi (t)$'); set(h,'Interpreter','latex');
h = xlabel('$t$'); set(h,'Interpreter','latex');
set(gca,'fontsize',16);
l = l + 1;

end
% save photo
print(strcat ('TimeDomain',num2str(iteration),'B',num2str(B)),'-djpeg')
clf;
for v = 1:l-1

FourierAdler = fft(AdlerSol{v});
omega = (0:length(FourierAdler)-1)*20/length(FourierAdler);
subplot(3,3,v);
plot(omega,abs(FourierAdler),'r',omega+20*ones(1,1001),

abs(FourierAdler),'r')
axis([15 25 0 40]);
grid;
h = ylabel('$K (\omega)$'); set(h,'Interpreter','latex');
h = xlabel('$\omega$'); set(h,'Interpreter','latex');
set(gca,'fontsize',16);

end
% save photo
print(strcat ('FreqDomain',num2str(iteration),'B',num2str(B)),'-djpeg')

end
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  תקציר
  

, מפאת התעניינות ם באמצעיים מכאנייםקת מסרק תדריזה מתמקד בפיתוח שיטה להפפרויקט 

. (MEMS) אלקטרומכניות-קרוכללית ובנוסף למספר שימושים פרקטיים אפשריים במערכות מי
מסרק תדרים מתקבל מאות המגיע ממערכת פיסקלית תונדת ומכיל אסופה של תדרים בדידים 

). למסרק Carrier frequencyבמרווחים שווים במרחב התדר סביב תדר נושא ( אשר ממוקמים
לרוב,  שומים מדעיים והנדסיים רבים בתחום התקשורת, עיבוד אותות, מטרולגיה וכו'.יישנם י

קבלת  אך מערכות אופטיות ובמעגלים חשמלייםמסרק תדרים מופק מתנודות המתרחשות ב
הינה בניית מודל הפעולה המוצעת יטת ש המסרק באמצעים מכאניים יכול להיות מדויק ויעיל יותר.

התנודות ואז בחינת  , המכיל בקרה בחוג סגור ועירור חיצוניקורה הנעה בדינמיקה לא ליניאריתשל 
גל סינוסודיאלי הרמוני  ניתן לשליטה ונלקח להיות של הקורה הינואילוץ השלה לפי הזמן והמיקום. 
העירור כאשר  במעט מהתדירות העצמית של הקורה. ותדירות שמוסטתבעל אמפליטודה קטנה 

שגורמת למתנד תופעה  – "משיכת תדר"של בתנאים מתאימים, מתרחשת תגובה  פועל על הקורה
 זו גורמתתופעה  אחר שנמצא איתו באינטראקציה פיסית.של מתנד קרובה לזו לתנוד בתדירות אחד 

אנליזה  רק הרצוי.סמתקבל המ זו ביפורקצייתשל סף בו SNICלקורה להגיע לסף ביפורקציית 
יה באמצעות פיתוח משוואת דינמיקה לא ליניארית של ניתן למדל את הבעתאורטית הראתה כי 

אנליטי תרון פ א ניתן לקבללש שוםמ רה למשוואת דאפינג הלא ליניארית.ניתנת להמהקורה ש
ממכפלה של שמורכב  –מוצע כפתרון למשוואת הדינמיקה  "אבולוציה איטית"מודל  – למשוואה זו

מטיות מספר הנחות מתבאמצעות  .עבור הקורה אמפליטודה ופאזה בזמןות המתארות פונקצי
ופיסיקליות, ניתן לקשר את האמפליטודה לפאזה ואף ניתן להמיר את פתרון משוואת הפאזה 

התנהגות מציאת  ,לבסוףיחסית פשוטה.  תדיפרנציאלישוואה לפתרון של משוואת אדלר, שהינה מ
סימולציות , שיש לה פתרון אנליטי ידוע. פתרון משוואת אדלרהקורה הכוללת מומרת לבעיה של 

, אשר הובילו לסימולציה ים אשר פותחו לאורך הפרויקטתמטימספר מודלים מנומריות בוצעו על 
הושוו לפתרון האנליטי  אשר משוואת אלה סימולציות  .ל הלא ליניארי של הקורההמודסופית על 

לבסוף את מסרק התדרים הרצוי, מה התאימו לתאוריה והפיקו  הסימולציות תוצאותאדלר מציע. 
  שהראה כי ההנחות אשר נעשו היו תקפות לשם הפקת מסרק התדרים.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  




