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Question 1

(a)

Let C = (2,0, qo, 6, F) be an NCW. We are to define an equivalent NPW. Let P = (3, @, qo, 9, k) be
an NPW with the acceptance condition of: P is accepting w € ¢ iff there exists a run p,, of P on w
such that min{k(inf(pw))} is odd and where:

n<q>{2 et

3 ;else

(b)
Let G = (%,Q, qo0, 9, F) where F = {Fi}§:1 be an NGBW. We are to define an equivalent NMW. Let
M= (%,0,q0,9,a) be an NMW where:

a={SCQ|SNF#0;V1<i<k}

(c)
Let S = (%,Q, qo, 6, @) where o = {(G;, B;)}*_, be an NSW. We are to define an equivalent NMW.
Let M = (2,0, qo,0,a’) be an NMW where:

o ={SCQ|SNG;,=0VvSNB; #0; V1 <i<k}

(d)
P =(3,Q,49,0,k) be an NPW with x : @ — [1,k]. We are to define an equivalent NSW. Let us
define the following sets:

Toyen = {1 <i<k|iiseven}
Iodd:{1§i§k|iisodd}
Vi € [even ) (Qeven)i = {q |K(Q) = Z}
Vi€ Iodgqa ; (Qodd)<j = {q |k(q) =¥ < jAY € Loaa}
Let S = (%, Q, qo, 9, &) where:

= {<(Qeven)i7 (Qodd)§j> | 1€ Ieven /\.] S Iodd}



Question 2

An alternating 1-Streett automaton (A1ISW) is a tuple A = (X, @, qo, 6, (G, B)) where all the compo-
nents but the last are as in ABW and G, B C Q. A run-tree r of an A1ISW is accepting iff all branches
p of r satisfy that Inf(p) NG # 0 — Inf(p) N B # 0 - which is equivalent to

Inflp) NG =0V Inflp) N B # 0

We are to provide a construction that converts an AISW into an equivalent NPW using at most 3
colors.

Construction Idea

Given an A1SW A = (X, Q, qo, 6, (G, B)), we’d want to construct an equivalent NPW P = (X, Q’, Qf, ', k).
We’ll use the min-odd acceptance condition. The construction alters the Miyano-Hayashi construction
displayed in class for converting an alternating automaton ABW into an equivalent non-deterministic
automaton NBW by eliminating all AND branches.

e Reminder: The Miyano-Hayashi construction keeps track of all the paths and makes sure that
each path visits an accepting state some time during the run. The construction keeps a booking
of all paths that visited an accepting state, and if there comes a time that all paths visit an
accepting state - it restarts and once again require all paths to visit an accepting state. This
procedure repeats infintely often and if all paths visit an accepting state infintely many times -
then the resulting automaton will accept. Thus this construction eliminates AND branches.

e The Miyano-Hayashi construction will not suffice for our problem because in each path we do
not know whether we’d want to check that it visits the states in B infintely many times or that
it doesn’t visit the states in G infintely many times. Thus we’ll suggest to guess for each path
whether it visits the first acceptance condition: Inf(p) NG = @ or the second: Inf(p) N B # (.

e Inf(p) N B # (: For all paths p; for which we guessed that they would satisfy the condition
Inf(p;) N B # 0: we’'d look at the resulting run-DAG that the Miyano-Hayashi construction
induces on them, but with replacing the original accepting states F' with the set B. Let us
denote the nodes in a given level ¢ of all of these branches as @;. For each ¢ we’ll color the nodes
in @; according to this criterion:

1. If the level i is not a reset stage in the M-H construction, then we’ll color all the nodes in
Q; with the color the 2. This is to signify that at this stage of the run, we haven’t still
reached a state from B in all of these paths and thus would still want to wait for the time
we do. Thus while repeating of these nodes by the min-odd criterion - we’d reject.

2. If the level 7 is a reset stage in the M-H construction, then we’ll color all the nodes in @Q;
with the color the 1. This is to signify (by the min-odd criterion) that we have visited a
state from B in all of these paths. Thus while repeating of these nodes (and assuming no
other nodes were visited infintely often) by the min-odd criterion - we’d accept.

e Inf(p) NG =0: For all paths p; for which we guessed that they would satisfy the condition
Inf(p;j)NG = 0: we'll use a different strategy. Let us consider again the resulting run-DAG that
the Miyano-Hayashi construction induces on these paths and let us denote the nodes in a given
level 7 of all of these branches as @;. For each ¢ we’ll check whether any of the states in Q; have
a state from G, as in if Q; NG # 0, and color the nodes in @Q; according to this criterion:

1. If Q; N G # ), then we’ll color all the nodes in Q; with the color the 0.
2. If Q; NG = 0, then we’ll color all the nodes in @Q; with the color the 1.



Formal Description

Given an AISW § = (%,Q, qo,0, (G, B)), the equivalent NPW P = (2,Q’,Q}, ¢, k) is defined as
follows: At each initiation of P on the run-DAG induced by the M-H construction on S as discussed
- each path will be issued with a non-deterministic guess by the accepting conditions mentioned.

o A state of P will be of the form: (Q¢, @p,,@p,) such that:

1. Q¢ will include all nodes in a given layer such that there exists some path p such that their
ancestor node was guessing Inf{p) NG = (.

2. @p, will include all nodes in a given layer such that there exists some path p such that
their ancestor node was guessing Inf(p) N B # () and the path p has visited a state from B.

3. @p, will include all nodes in a given layer such that there exists some path p such that
their ancestor node was guessing Inf(p) N B # () and the path p still owes a visit to a state
from B.

e Q) will include two states - once corresponding to each guess. Each of them will place the
original state gy to be in one of the accepting conditions. Thus:

Q/O = {<QO7 wa ®>7 <®7 wa QO>}
e Let us define a transition function dg for the all paths p with the guess Inf(p) NG = (:
5G = <<QG7®7®>507 <Q/Gv®a®>> Q/G ': /\ 6((]70)
4€Qc

e Let us define a transition function dp for the all paths p with the guess Inf(p) N B # 0

’ / o =0
63 = {(<®7QBU7QBU>aU7 <®7QB,U ﬁB7CQB,U \B>> ‘ 8Z ’: /\qu 5(q.0) }U

Qp, #0
(40, Q5,,@5.),0,0.Q5, UQ, \ (@5, \ B),Q5, \ B)) | b, = Asean, st0.0
Q/Bo = /\qGQBOJ(qJ)

Given these two functions, let us define:

Qp, CVYgUVp,

5/(<QG7QB1MQBO>’O—) = U (<Q/G’Q/BU7Q/B,,>> gg Li%}\B/UCSJ’GQ;éBO@: \I/G U‘I’Bo U\I/Bv
(Ve,0,0) € 6 Up, U¥p, =0VQE UQy, #0

0,9p,,¥p,) €dp

The definition of ¢’ allows for each node that has ancestors with both accepting condition to
”choose” which one he will follow on forth.

e Let us define the coloring as was explained above:

1 ; QenNG=10

0 ; else

1 ;Qp, =0

2 ; else

ke((0,@B,,QB,)) ; ra((Qa,0,0)) =1

0 ; else

ke((Qa,0,0)) = {
ke((0,QB,,QB,)) = {

£((Qa,@B,,RQB,)) = {



Construction Proof

Claim 0.1. Let w € X¥. Let S be an A1SW. Then the NPW P by the construction above accepts w
iff S accepts w.

Proof. Let r = { %,Q%U,Q%U), (QlG,Q}%,QlB) ... be an accepting run of P on w € X*. Hence,
since there are only three colors {0,1,2} min(k(inf(r))) = 1 (acceptance condition is defined to be
min,odd). By definition of k, (min(kg(inf(r))) = 1) A (min(kp(inf(r))) = 1). By the Acceptance
of an w-word by the AISW. A run-tree r of an A1ISW is accepting iff all branches p of r satisfy that
Inf(p)NG # 0 implies Inf(p)NB # () . This condition is equivalent to Inf(p)NG = OVInf(p)NB # (.
Let p be a branch in r, split into cases:
o We guess the first accepting option, that is Inf(p) N B # 0, in that case, our construction is just like
the M-H construction we saw in class. Thus from the correctness of M-H, we get that there has been
infinitely reset steps, we know that between every two adjacent reset points all paths have visited at
b € B state at least once, and therefore all paths have visited the accepting set infinitely often. Thus
p satisfies Inf(p) N B # 0.
o We guess the second accepting option, that is Inf(p) N G = 0, in that case, min(kg(inf(p))) = 1,
by definition of kg, p visited only finite times in g; € G, otherwise the minimal color would be zero
and even in contradiction to r an accepting run on P.
In conclusion, if a word w € P then w € S.

Now, let us consider (T, v) an accepting run-DAG of S on w. Thus by its definition, each of his
branches p satisfies Inf(p) NG = 0V Inf(p) N B # (). Thus by the definition of £ we get that the whole
run p* satisfies min(k(Inf(p*))) = 1. Let us now split into cases for each sub-branch p in the run p*:

o If p satisfies Inf(p) N B # () then since we have infintely many resets by our construction - we’ll
have by definiton k¢ = kg = 1 and - then k = 1 and thus the path is accepted.

o If p satisfies Inf(p) N G = 0 = then there exists a point in p* in which we stop seeing states
from G. Let us denote the nodes in a given level ¢ as @); and let 1) be the index of the last visit
to a state from G. Then we must have Vn > v ; Q, NG = (). Thus by the definition of xk we’ll
have x = 1 and the path is accepted.

e If there exists a path which is not accepted - we’ll have that both condition are not satisfied and
thus we’ll have min(kg(inf(p))) = 0 and thus we do not accept.

O



Question 3

(a)

In this question we are to prove the Robustness of the Weak Wagner Classes:

Theorem 0.2. Let L = [M] € DMI for a DMW M such that |IM|%, = d and |[M|Z, = d'. Let M’
be a different DMW such that [M'] = L. Then |M'|}, =d and |M’'|Z, =d'.

Proof. We will prove the theorem for |[M|¥, since the same argument for |[M|Z, is symmetrical. Let
M be a DMW such that [M] € DMi. Let us denote [M] = L and let us assume that |[M|*, = d.
We will prove the theorem for an odd value of d since the same argument for an even value of d is
similar up to a change of indices. Since |M|T, = d, then there exists a sequence of maximal strongly
connected components (MSCCs) in M of the form: S; ~» Sg ~ - -+ ~» Sy, with alternating polarities
such that 5; is reachable from S;_; for ¢ < d and S; is an accepting MSCC. For each 1 <i < d let
s; be a state of S; and let ¢; be a word that takes s; back to s; while visiting all of S;’s states and
no other states. Moreover, for each 1 < j < d —1 let ¢; be a word that takes ¢; to 1;41. Let ¥ be a
word reaching s;. Let M’ be a different DMW such that [M’] = L and let us denote the number of
states in M’ as n. Let m > n and let us consider the following w-words:

wy = q"d’f
we = Wi (-
wy = Wiyt Co- Yy

e A R N C R AR C R C R R ot

By the definition of the positive diameter measure |M|T, - one can see that for every 1 < i < d we
have that w; € L iff i is odd.

Lemma 0.3. |[M'|f, >d

Proof. From the previous statement and because we assumed that d is odd - we have that wg € L =
[M’]. Let S/, be the trapping MSCC of M’ on wg. Since wq € [M’] we have that S/, is an accepting
MSCC of M’. Let us denote pg to be the run of M’ on wy (which is singular since M’ is deterministic).
Since m > n, and n is the number of states in M’, we have that p; must have a loop when going
through the infix 97" - ¢ - Y5 - o - 5" - (3--- " ;. This loop must form an MSCC which we will
denote S,_,, which must go on with {4—1 to S;. Thus S)_; ~» S}. Continuing in the same manner
we obtain a sequence of reachable MSCCs of M’ of the form: S| ~» S§ ~» -+~ S | ~» S/ with
alternating polarities S7 is accepting. Thus, by definition, we have that M’ has a positive diameter
measure of at least d. O

Lemma 0.4. |[M'|T, <d

Proof. Let us assume towards contradiction that M’ has a positive diameter measure of more than
d, as in |[M’'|T, = r > d. Applying the same argument stated in the previous lemma with reversed
roles between M and M’ we’ll get that M must have a positive diameter measure of at least r, as in
IM|L, > r > d, in contradiction to the assumption that |M|L, = d. O

From these two lemmas we’ll get |[M’'|T, = d. O



(b)

In this question we are to prove the Strictness of the Weak Wagner Classes:

Theorem 0.5. 1. DMgd’i) c ]D)I\\/[[gldﬂ’p) forpe{+,—} andd e N.
Proof. Let p € {+,—} and d € N. By definition we have that:
DM{®) = {L | 3DMA M € DM} st. MY, <d A IM|Z <d}
{L| 3DMA M e DM; st. IM|E, <d+1 A M2 <d+1}
DM = {L | 3DMA M € DM} s.t. [M[P, <d+1}

Thus we trivially have that ID)Mgld’i) - ]D)Mgldﬂﬂ’),
Lemma 0.6. Letp € {+,—} and d € N. Then ]D)Mgldvi) # DMS{”“’).

Proof. Let d € N and let us assume w.l.o.g that p = +. The argument for p = — is symmetrical.
We will prove the lemma by providing a DMW M such that M € ]D)Mgldﬂ’ﬂ \]DMgld’i). Let M =
(%,Q, 90,9, a) be a DMW where:

¥ ={a,b}
Q={q|1<i<d+1}
do=q1

6(qi,b) = qi

0(gi,a) =qiy1; V1 <i<d

6(qd+1,a) = qat1
a={{¢}|iis odd}

One can see that M € DM, since M has no MSCC with a subsumed SCC with different, polarity.
Moreover, M has a positive diameter measure of d + 1 and a negative diameter measure of d so
IM|L, = d+ 1 and |[M|Z, = d. Thus we have by definition that M € ]D)Mgldﬂ’ﬂ and since d <
d+ 1= |M|T, we have also by definition that M ¢ ID)Mgld’Jr). Since ]D)M%d’ﬂ - ]D)Mgld’i) - we get that
M ¢ DM, O

Since ]D)Mgld’i) c DMgldH’p) and by the lemma we have that DMgld’i) # ]D)Mgldﬂ’p) - we have that
d+ d+1,
DM+ ¢ pMm{EtP), O



Theorem 0.7. 2. ]D)MYI”)) c ID)Mgd’i) forpe {+,—} andd e N.

Proof. Let p € {+,—} and d € N. First, by arguments similar to those in the previous section, we
trivially have that ]D)Mgld’p ) C ]D)Mgld’i) by definition.

Lemma 0.8. Letp € {+,—} and d € N. Then ]D)Mgld’p) # ]D)Mgld’i).

Proof. Let d € N and let us assume w.l.o.g that p = +. The argument for p = — is symmetrical.

We will prove the lemma by providing a DMW M such that M € ]DM](Id’i) \]D)M](ld’”. Let M —
(%,Q, q0, 9, @) be a DMW where:

Y ={a,b}
Q={q|1<i<d}

90 = q1

6(qi,b) = qi

0(qi,a) = qiy1; V1 <i<d—1
6(qa, a) = qa

a={{¢}|iis even}

One can see that M € ]D)Mf, since M has no MSCC with a subsumed SCC with different polarity.
Moreover, M has a positive diameter measure of d — 1 and a negative diameter measure of d so
M|, = d—1 and |[M|Z, = d. Thus we have by definition that M € DM'*™) and M ¢ DM{*",
Since ID)Mgld’f) - ID)Mgld’i) - we get that M € DMj(ld’i). O

Since ]D)M](ld’p) - ID)Mj(ld’i) and by the lemma we have that ]DM](ld’p) # ]D)Mj(ld’i) - we have that
pM{4?) ¢ pM{©H). O



Question 4

In this question we are to prove the following:

Theorem 0.9. NBT O DBT

Proof. Let:

L; = {X-labeled D-trees (T,v) | 3 path w € T s.t. a occurs only finitely many times in 7}

where:

Y ={a,b}
D =1{0,1}

We will provide an NBT accepting Li. Let T = (X, @, Qo, 0, F') where:

Q = {qr(a)> 4G(b)> Gace> Gres }

Qo = {(JF(a)}

6(qr(a), @) = 6(qr(a), ) = {{qF(a)> Qacc); (Qaces 4 (a)) {dG () Qace) (Qace> dav)) }
3(aa ), 0) = {{ac®)> dace)s (Qaces Gam))

(gaw)>a) = {{Grejs Gres) }

(aces @) = 0(qaces b) = {(daces Gace) }

6(qrejs @) = 0(qrej, b) = {(Grej, @rej) }

F ={46t), Gace}

Let us provide a short argument as to why T accepts Li:

T works by guessing the point at which the letter a will stop occurring in some path.

The state qr(,) symbols that we still expect to see another a somewhere down the current path
(and thus the notation F(a) for "finally a”).

At some point, T guesses that from now on it will only encounter b’s along the current path - a
condition assigned to the state gg () (and thus the notation G(b) for “globally b”).

The run of T starts off with accepting any letter and allowing at each point to be the designated
location of the guess, while accepting the other side (using the designated state ¢uc.), or keep
on seeing a’s, and accepting on the other side.

When the guess finally occurs, we’d want to keep on seeing b’s - so with a b we’ll keep looking
for that condition using the state qg(;) and accepting at the other side. If from any point after
the guess we see an a - we'll reject - as denoted by the state gre;.

T would accept a ¥-labeled D-tree (T, v) that has (T, v) € L because T has a path 7 such that
a occurs only finitely many times in 7, and thus there exists a run of 7 on (7', v) in which we
will stop seeing a’s along a certain path - so the paths down that line will accept, along with
the other paths that will accept as explained before.

T would reject a X-labeled D-tree (T, v) that has (T, v) ¢ L; because T will have a’s appearing
infinitely many times in each of its paths so any guess of 7 will be wrong - as in there exists a
path 7 in all runs of 7 on (T, v) (the one of the guess) in which we would only reject infinitely
many times - and thus won'’t see any accepting states infinitely many times - and then we’ll have

Inf(m)NF = 0.



Claim 0.10. There is no DBT accepting L.

Proof. Assume towards contradiction that exits a DBT D = (X,Q, qo,0, F') accepting L;. Let us
denote |F| = W. Let (T,v) be a tree such that all of its paths contain infinitely many a’s but for
one - 7 - in which there are only b’s, as in the path 7* corresponds to b*. Clearly, (T,v) € L.
Since we assumed that D accepts L; we have that [D] = L; and thus (T,v) € [D]. Thus the run
(T, r) of D on (T,v) (which is singular since D is deterministic) is accepting - which means that all
paths m € T have Inf(m) N F = (), and in particular we have that Inf(7*) N F = ) - as in the path =
visits some accepting state infintely often. Let ¢; be the index in 7* in which we visit an accepting
state the i’th time. Let us consider a set of modified trees {(T;,v)};/i" in which Tj is T but with 7*
replaced with 7} - the path corresponding to b¥1ab%2a - - - ab¥iab®. For any 1 <4 < W, there is a finite
number of a’s in 7} so we have (T;,v) € [D]. Since D is deterministic, the runs (T, r) of the original
tree and (7T;,7;) of the modified trees agree at each stage before the change of 7* at ;. The tree
(Ty41,v) will have a path 7y, ; that corresponds to w = brab¥2q - - - ab¥v+1ab®. By our construction
- the run (T, r) of D on (T, v) visits an accepting state in each index a appears in w. Since there are
¥ + 1 a’s in w, there are ¥ + 1 visits of an accepting state. Since we assumed that |F| = ¥, by the
Pigeonhole Principle we have that there must be two indices 1 < r < s < W 4 1 such that gy, = gy,
when gy, represents the accepting state visited at the m’th iteration of the construction. Let us
consider (T#,v) to be a tree where T# is T but with 7* replaced with the path 7# corresponding to:
b¥rab¥zq - - - ab¥r (ab¥r+1ab¥+2a - - - ab¥s)¥. Since there are infinitely many a’s now in 7% there is no
path where a occurs only a finite number of times and thus we have that (T#,v) ¢ L;. But since the
run (T#,r#) of D on (I'#,v) is deterministic, it still agrees with (T, 7) on each visit to an accepting
state - and thus it visits some accepting state infintely often and thus we have that (T#,v) € [D], in
contradiction to the assumption that [D] = L.

O

O



