Automata and Logic on Infinite Objects 2

Shay Kricheli

December 2019

Question 1

To answer this question, let us remind:

Definition 0.1. A language $L \subseteq \Sigma^{w}$ is non-counting if and only if:

$$
\exists n_{0} \in \mathbb{N} \text { s.t. } \forall n \geq n_{0} ; \forall u \in \Sigma^{*}, v \in \Sigma^{+}, w \in \Sigma^{w} ; u v^{n} w \in L \Longleftrightarrow u v^{n+1} w \in L
$$

In this question, we are to complete the proof for the following:

Claim 0.2. For every LTL formula φ, the set $\llbracket \varphi \rrbracket$ is non-counting.
The proof is by structural induction on φ and we are to complete the case where $\varphi=\varphi_{1} U \varphi_{2}$. Let $\varphi=\varphi_{1} U \varphi_{2}$. Let us denote $L_{1}=\llbracket \varphi_{1} \rrbracket$ and $L_{2}=\llbracket \varphi_{2} \rrbracket$. By the induction hypothesis, we have that L_{1} and L_{2} are non-counting. Let n_{1}, n_{2} be the constants promised by the induction hypothesis for L_{1} and L_{2} respectively such that:

$$
\begin{aligned}
& \forall n \geq n_{1} ; \forall u \in \Sigma^{*}, v \in \Sigma^{+}, w \in \Sigma^{w} ; u v^{n} w \in L_{1} \Longleftrightarrow u v^{n+1} w \in L_{1} \\
& \forall n \geq n_{2} ; \forall u \in \Sigma^{*}, v \in \Sigma^{+}, w \in \Sigma^{w} ; u v^{n} w \in L_{2} \Longleftrightarrow u v^{n+1} w \in L_{2}
\end{aligned}
$$

By the definition of a model of a LTL formula, these correspond to:

$$
\begin{aligned}
& \forall n \geq n_{1} ; \forall u \in \Sigma^{*}, v \in \Sigma^{+}, w \in \Sigma^{w} ; u v^{n} w \models \varphi_{1} \Longleftrightarrow u v^{n+1} w \models \varphi_{1} \\
& \forall n \geq n_{2} ; \forall u \in \Sigma^{*}, v \in \Sigma^{+}, w \in \Sigma^{w} ; u v^{n} w \models \varphi_{2} \Longleftrightarrow u v^{n+1} w \models \varphi_{2}
\end{aligned}
$$

Let us choose $n_{0}=\max \left\{n_{1}, n_{2}\right\}+1$ and let $n \in \mathbb{N}$ such that $n>n_{0}$. We saw in class that:

$$
\forall u \in \Sigma^{*}, v \in \Sigma^{+}, w \in \Sigma^{w} ; \quad u v^{n} w \vDash \varphi_{1} U \varphi_{2} \Longrightarrow u v^{n+1} w \vDash \varphi_{1} U \varphi_{2}
$$

We are to show that:

$$
\forall u \in \Sigma^{*}, v \in \Sigma^{+}, w \in \Sigma^{w} ; \quad u v^{n+1} w \vDash \varphi_{1} U \varphi_{2} \Longrightarrow u v^{n} w \vDash \varphi_{1} U \varphi_{2}
$$

Let $u \in \Sigma^{*}, v \in \Sigma^{+}, w \in \Sigma^{w}$ and let us assume that $u v^{n+1} w \models \varphi_{1} U \varphi_{2}$. By the definition of the "until" operator - this implies:

$$
\exists k \text { s.t. } u v^{n+1} w[k . .] \models \varphi_{2} \wedge \forall j<k ; u v^{n+1} w[j . .] \models \varphi_{1}
$$

Let k be the least such k. Let us now consider two cases:

- $k<|u|+|v|$

In that case we have:

$$
u v^{n+1} w[k . .]=u v[k . .] v^{n} w \wedge \forall j<k ; u v^{n+1} w[j . .]=u v[j . .] v^{n} w
$$

Let $u^{\prime}=u v$ and $n^{\prime}=n-1$. We know that: $n>\max \left(n_{1}, n_{2}\right)+1$ and therefore $n^{\prime}=n-1>$ $\max \left(n_{1}, n_{2}\right)$ and thus the induction hypothesis applies to n^{\prime}. Thus:

$$
\begin{gathered}
u v^{n+1} w[k . .]=u v[k . .] v^{n} w=u^{\prime}[k . .] v^{n^{\prime}+1} w=u^{\prime} v^{n^{\prime}+1} w[k . .] \wedge \\
\forall j<k ; u v^{n+1} w[j . .]=u v[j . .]^{n} w=u^{\prime}[j . .] v^{n^{\prime}+1} w=u^{\prime} v^{n^{\prime}+1} w[j . .] \\
\rightarrow u^{\prime} v^{n^{\prime}+1} w[k . .] \models \varphi_{2} \wedge \forall j<k ; u^{\prime} v^{n^{\prime}+1} w[j . .] \vDash \varphi_{1}
\end{gathered}
$$

and by the induction hypothesis we have:

$$
u^{\prime} v^{n^{\prime}} w[k . .] \models \varphi_{2} \wedge \forall j<k ; u^{\prime} v^{n^{\prime}} w[j . .] \models \varphi_{1}
$$

which is equivalent to:

$$
u v v^{n-1} w[k . .]=u v^{n} w[k . .] \models \varphi_{2} \wedge \forall j<k ; u v v^{n-1} w[j . .]=u v^{n} w[j . .] \models \varphi_{1}
$$

and thus $u v^{n} w \models \varphi_{1} U \varphi_{2}$.

- $k \geq|u|+|v|$

In that case, let us consider $u v^{n+1} w[i .$.$] It may be that it equals u^{\prime} v^{m} w[i .$.$] for m<n_{0}$, so the induction hypothesis does not apply in that case. However, $u v^{n+1} w[k ..] \neq \varphi_{2}$ implies $u v^{n} w[k-|v| ..] \models \varphi_{2}$ since they agree on the inspected suffix. From the same arguments, $\forall(|u|+|v|) \leq j<k ; u v^{n} w[j-|v| ..] \models \varphi_{1}$.

For $j<(|u|+|v|)$ from the same explanation presented above (case $k<|u|+|v|$), we get that $\forall j<(|u|+|v|) ; u v^{n} w[j ..] \models \varphi_{1}$

Therefore, $u v^{n+1} w \models \varphi_{1} U \varphi_{2} \Longrightarrow u v^{n} w \vDash \varphi_{1} U \varphi_{2}$

Question 2

We saw in class that $\mathbb{L T L} \subseteq \mathbb{N} \mathbb{B} \mathbb{W}$, thus, for each of the formulas ψ_{i}, we will present an NBW \mathcal{B}_{i} over $\Sigma=2^{A P}$, such that $\llbracket \mathcal{B}_{i} \rrbracket=\llbracket \psi_{i} \rrbracket$. Let us consider the following:
$\varphi_{0}=G p \vee G q$
$\neg \varphi_{0}=\neg(G p \vee G q)=\neg G p \wedge \neg G q=F \neg p \wedge F \neg q$
$\varphi_{1}=G F p$
$\neg \varphi_{1}=\neg G F p=F \neg(F p)=F G \neg p$
$\varphi_{2}=G F p \rightarrow G F q$
$\neg \varphi_{2}=\neg(G F p \rightarrow G F q)=G F p \wedge \neg G F q=G F p \wedge F \neg(F q)=G F p \wedge F G \neg q$ $\varphi_{3}=F G p \wedge G F p$
Let us construct the automatons:

$$
\psi_{1}=\neg \varphi_{0} \wedge \varphi_{1} \neg \varphi_{2}=(F \neg p \wedge F \neg q) \wedge(G F p) \wedge(G F p \wedge F G \neg q)=F \neg q \wedge G F p \wedge F G \neg q
$$

\mathcal{B}_{1} :

$$
\psi_{2}=\neg \varphi_{0} \wedge \neg \varphi_{1} \wedge \varphi_{2}=(F \neg p \wedge F \neg q) \wedge(F G \neg p) \wedge(G F p \rightarrow G F q)=F \neg q \wedge F G \neg p
$$

$\mathcal{B}_{2}:$

$\psi_{3}=\neg \varphi_{0} \wedge \varphi_{2} \wedge \varphi_{3}=(F \neg p \wedge F \neg q) \wedge(G F p \rightarrow G F q) \wedge(F G p \wedge G F p)=F \neg p \wedge F \neg q \wedge F G p \wedge G F q$

$\psi_{4}=\neg \varphi_{0} \wedge \neg \varphi_{2} \wedge \varphi_{3}=(F \neg p \wedge F \neg q) \wedge(G F p \wedge F G \neg q) \wedge(F G p \wedge G F p)=F \neg p \wedge F \neg q \wedge G F p \wedge F G \neg q \wedge F G p=$ $F \neg p \wedge F G p \wedge F G \neg q$
\mathcal{B}_{4} :

Question 3

(1)

Let us consider the following restricted grammer:

$$
\varphi:: r|\neg \varphi| \varphi_{1} \vee \varphi_{2} \mid r \mapsto \varphi
$$

where r is a regular expression. Let us denote:

$$
\begin{gathered}
r \mapsto \varphi::=r \mapsto(\text { true }, \varphi) \\
\varphi_{1} \wedge \varphi_{2}::=\neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)
\end{gathered}
$$

In this question we are to describe the following languages using PSL formulas in that restricted grammar:

- p never holds:

$$
(\text { true })^{+} \mapsto \neg p
$$

- p holds on every third cycle, starting from an even position:

$$
(\text { true } \cdot \text { true })^{*} \cdot(\text { true } \cdot p) \Leftrightarrow G(\text { true } \cdot \text { true } \cdot p)
$$

- p_{1} holds on every third cycle in which p_{2} holds:

$$
\left(\left(\neg p_{2}\right)^{*} \cdot p_{2} \cdot\left(\neg p_{2}\right)^{*} \cdot p_{2} \cdot\left(\neg p_{2}\right)^{*} \cdot p_{2}\right)^{+} \mapsto p_{1}
$$

- p_{1} holds forever long starting the cycle where p_{2} held for 3 consecutive cycles:

$$
\begin{gathered}
\left(\left(\neg\left(\text { true }^{*} \cdot p_{2} \cdot p_{2} \cdot p_{2} \cdot \operatorname{true} e^{*}\right)\right) \cdot\left(p_{2} \wedge p_{1}\right)^{3} \cdot t\right. \text { true } \\
\left(\left(\text { true }^{*} \cdot\left(\left(p_{2} \wedge \neg p_{1}\right) \cdot p_{2} \cdot p_{2}+p_{2} \cdot\left(p_{2} \wedge \neg p_{1}\right) \cdot p_{2}+p_{2} \cdot p_{2} \cdot\left(p_{2} \wedge \neg p_{1}\right)\right) \mapsto \text { false }\right)\right.
\end{gathered}
$$

(2)

Let us consider the following PSL formulas:

$$
\begin{gathered}
\varphi_{1}=\left(p_{1} \wedge X p_{2}\right) U\left(p_{3} \wedge X p_{4}\right) \\
\varphi_{2}=\left(p_{3} \cdot p_{4}\right) \vee\left(\left(p_{1} \cdot p_{2}\right) \wedge\left(p_{1} \cdot p_{2}\right)^{+} \Leftrightarrow\left(p_{3} \cdot p_{4}\right)\right)
\end{gathered}
$$

In this section we are to prove or give a counterexample for the claim: "the following two PSL formulas are equivalent". Let us provide a counterexample and let us assume a word is formulated using 4 -dimensional vectors such that the i^{\prime} 'th coordinate corresponds to p_{i} for every $i \in[1,4]$. Let:

$$
w=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Claim 0.3. $w \models_{P S L} \varphi_{1}$

Proof. Since $p_{3} \in w[2]$ and $p_{4} \in w[3]$ we have that for $k=2, w[k ..] \models_{\text {PSL }}\left(p_{3} \wedge X p_{4}\right)$. Moreover, since $p_{1} \in w[1]$ and $p_{2} \in w[2]$ we have that $w[1 ..] \models_{\text {PSL }}\left(p_{1} \wedge X p_{2}\right)$. Since $j=1$ is the only index that holds $j<k$, by the definition of the "until" operator, we have that $w \models_{\mathrm{PSL}}\left(p_{1} \wedge X p_{2}\right) U\left(p_{3} \wedge X p_{4}\right)=\varphi_{1}$.

Claim 0.4. $w \not \vDash_{P S L} \varphi_{2}$
Proof. Since $p_{3} \notin w[1]$ we have that $w \not \mathcal{F}_{\mathrm{PSL}}\left(p_{3} \cdot p_{4}\right)$. Since $p_{1} \in w[1]$ and $p_{2} \in w[2]$ we have that for $k=2, w[. . k] \in \llbracket p_{1} \cdot p_{2} \rrbracket$ and thus $w=_{\text {PSL }}\left(p_{1} \cdot p_{2}\right)$, but since $p_{3} \notin w[3]$ we have that $w[k+1 ..] \not \models_{\mathrm{PSL}}\left(p_{3} \cdot p_{4}\right)$ and thus $w \not \vDash_{\mathrm{PSL}}\left(\left(p_{1} \cdot p_{2}\right) \wedge\left(p_{1} \cdot p_{2}\right)^{+} \Leftrightarrow\left(p_{3} \cdot p_{4}\right)\right)$. Thus $w \not \vDash_{\mathrm{PSL}}$ $\left(p_{3} \cdot p_{4}\right) \vee\left(\left(p_{1} \cdot p_{2}\right) \wedge\left(p_{1} \cdot p_{2}\right)^{+} \Leftrightarrow\left(p_{3} \cdot p_{4}\right)\right)=\varphi_{2}$.

Thus we have that φ_{1} and φ_{2} are not equivalent.

Question 4

In this question we are asked to decide for each of the given languages over $\Sigma=2^{\{p, q\}}$ if they can be accepted by an LTL formula and by a PSL formula. A point to notice is that LTL syntax is subsumed by PSL syntax and therefore wherever we have an LTL formula for a language, it's also the corresponding PSL formula.

1. $L_{1}=\{w: p \in w[i] \wedge q \notin w[i] \forall i \geq 3\}$

Let us define the following formulas in their corresponding logic:
(i) LTL - $X^{2} p \wedge X^{2} G(\neg q)$
(ii) PSL - $X^{2} p \wedge X^{2} G(\neg q)$
2. $L_{2}=\{w: p \in w[i]$ for exactly three different $i \in \mathbb{N}\}$;
(i) LTL - $\neg p U(p \wedge X(\neg p U(p \wedge X(\neg p U(p \wedge X G(\neg p))))))$
(ii) PSL - another way to phrase $(\neg p)^{*} \cdot(p) \cdot(\neg p)^{*} \cdot(p) \cdot(\neg p)^{*} \cdot(p) \cdot G(\neg p)$
3. $L_{3}=\{w:$ The cardinality of $\{i \in \mathbb{N}: p \in w[i]\}$ is finite and odd $\}$
(i) LTL -

Claim 0.5. the language L_{3} is not non-counting.
Proof. For every odd $n \in \mathbb{N}$. $p^{n} q^{\omega} \in L_{3}$ but, $p^{n+1} q^{\omega} \notin L_{3}$
(ii) PSL $\left.-\left(\neg\left((\neg p)^{*} \cdot p(\neg p)^{*} \cdot p \cdot(\neg p)^{*}\right)^{*}\right)\right) G(\neg p)$
4. $L_{4}=\{w:$ The cardinality of $\{i \in \mathbb{N}: p \in w[i]\}$ and $\{i \in \mathbb{N}: q \in w[i]\}$ are finite and equal $\}$;

Claim 0.6. L_{4} is not is not definable by PSL formula, since $\mathbb{L T L} \subset \mathbb{P S L}$ therefore cannot defined by LTL.

Proof. we saw in class that $\mathbb{P S L}=\mathbb{N} \mathbb{B} \mathbb{W}$.
Assume towards contradiction that we have an $\mathbb{N} \mathbb{B} \mathbb{W} B$ s.t $\llbracket B \rrbracket=\llbracket L_{4} \rrbracket$.
$\mathcal{B}=\left(\Sigma, Q, Q_{0}, \delta, F\right)$, since a NBW has a finite number of states, let $|Q|=n . \mathrm{q}$, and p have to be finite but the word is infinite, thus there has to be another letter that repeats itself infinitely many times, let c be that letter. lets take a look at the word $w=p^{2 n} q^{2 n} c^{\omega}$. Easy to see that $w \in L_{4}$, we can notice that the prefix $w[. .2 n]$ which is $p^{2 n}>n$ thus there has to be a state in B that repeat twice, let it be q_{i}. Let $\left\{q_{0_{1}}, . ., q_{i_{l}}, \ldots, q_{i_{k}}, . . q_{j_{2 n}}\right\}$ be the run for that prefix, now we can pump $p^{2 n}$ in w, to $w^{\prime}=p^{2 n+m(k-l)} q^{2 n} c^{\omega}$. w^{\prime} will repeat the loop from q_{i} to $q_{j} m$ times, continue with the same path of w and thus, eventually will accept too. It is clear that $w^{\prime} \notin L_{4}$, in contradiction. Therefore L_{4} is not $\mathbb{P S L}$ definable.

Question 5

Let $\mathcal{C}=\left(\Sigma, Q, q_{0}, \delta, F\right)$ be a DCW such that $\llbracket \mathcal{C} \rrbracket=L \subseteq \Sigma^{\omega}$ for some alphabet $\Sigma=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{|\Sigma|}\right\}$. We are to write an S1S formula $\psi_{\mathcal{C}}$ satisfying $\llbracket \psi_{\mathcal{C}} \rrbracket=L$. Let us denote the set of states of \mathcal{C} as: $Q=\left\{q_{1}, q_{2}, \ldots, q_{|Q|}\right\}$. Since \mathcal{C} is a DBW, it is deterministic and thus for every word $w \in \Sigma^{\omega}$, there is only one corresponding run which we will denote as ρ_{w}.
Let $w \in \Sigma^{\omega}$ be an input word to \mathcal{C} and $\rho_{w}=q_{\rho_{w_{0}}} q_{\rho_{w_{1}}} q_{\rho_{w_{2}}} \ldots$ the only corresponding run of \mathcal{C} on w. Let us define for w and for each state $q_{i} \in Q$ a corresponding bounded variable in a form of a set $A_{w_{i}}$ that contains all the indices in which the run ρ_{w} passes at q_{i}, as in:

$$
A_{w_{i}}=\left\{j \mid q_{\rho_{w_{j}}}=q_{i}\right\}
$$

Since $q_{\rho_{w_{0}}}=q_{0}$, by definition we have: $\rho_{w_{0}}=0 \in A_{w_{0}}$. Moreover, let us define for w and for each letter $\sigma_{i} \in \Sigma$ a corresponding set $B_{w_{i}}$ that contains all the indices in which the word σ_{i} appears in w, as in:

$$
B_{w_{i}}=\left\{j \mid w[j]=\sigma_{i}\right\}
$$

Let us define a formula $\psi_{\mathcal{C}}$ as follows:

$$
\left.\left.\begin{array}{rl}
& \exists A_{w_{1}}, \exists A_{w_{2}} \cdots \exists A_{w_{|Q|}} \\
\forall x \quad\left(\bigvee_{i=1}^{|Q|} x \in A_{w_{i}}\right) \wedge \bigwedge_{i=1}^{|Q|}\left(x \in A_{w_{i}} \rightarrow \bigwedge_{\substack{j=1 \\
j \neq i}}^{|Q|} x \notin A_{w_{j}}\right)
\end{array}\right) \wedge\right\rangle
$$

Let us provide an explanation for our construction:

1. The first line declares the existence of the bounded variables we defined earlier.
2. The second line corresponds to the fact that each natural number $x \in \mathbb{N}$ induces one position in the run; $x \in \rho_{w}$ and is associated with exactly one state $q \in Q$.
3. The third line corresponds to the fact that each natural number $x \in \mathbb{N}$ induces one position in the run; $x \in \rho_{w}$ and is associated with exactly one letter $\sigma \in \Sigma$.
4. The fourth line corresponds to fact we stated earlier that since \mathcal{C} is deterministic, its initial state is singular - which we denoted as q_{0}.
5. The fifth line corresponds to fact that each natural number $x \in \mathbb{N}$ induces one element in the transition function δ.
6. The sixth line corresponds to the co-Büchi acceptance condition in that each state in the set F is reached a finite number of times.

Question 6

(1)

In this section we are to compare the expressive power of LTL and DBW.
Claim 0.7. $\mathbb{D} \mathbb{B} \mathbb{W} \nsubseteq \mathbb{L} \mathbb{T}$
Proof. To prove so we'll present a language accepted by a DBW that cannot be accepted by an LTL formula. We saw in class that LTL cannot "count" - as in for every LTL-formula φ, the set $\llbracket \varphi \rrbracket$ is non-counting. Let $\Sigma=\{a, b\}$ and let $r=(a a)^{*} b^{\omega}$. We also saw in class that the language $\llbracket r \rrbracket$ is not non-counting. Therefore it cannot be accepted by an LTL formula. Let us construct a DBW \mathcal{D} that accepts L :

One can see that $\llbracket \mathcal{D} \rrbracket=L$ and thus we constructed a DBW that accepts L.
Claim 0.8. $\mathbb{L T L} \nsubseteq \mathbb{D} \mathbb{B W}$
Proof. To prove so we'll present a language accepted by an LTL formula that cannot be accepted by an DBW. We saw in class that the language $L=\left\{w:|w|_{a}<\infty\right\}$ cannot be accepted by a DBW. Let $\varphi=(a \vee b) U G(b)$. One can see that $\llbracket \varphi \rrbracket=L$ and therefore we constructed an LTL formula that accepts L.

(2)

In this section we are to compare the expressive power of LTL and DCW.
Claim 0.9. $\mathbb{D} \mathbb{C} \mathbb{W} \nsubseteq \mathbb{L} \mathbb{L}$
Proof. To prove so we'll present a language accepted by a DCW that cannot be accepted by an LTL formula. Let us define again $\Sigma=\{a, b\}$ and let $r=(a a)^{*} b^{\omega}$. Let us construct a DCW \mathcal{C} that accepts L :

One can see that $\llbracket \mathcal{C} \rrbracket=L$ and thus we constructed a DBW that accepts L.
Claim 0.10. $\mathbb{L T L} \nsubseteq \mathbb{D} \mathbb{C} \mathbb{W}$
Proof. To prove so we'll present a language accepted by an LTL formula that cannot be accepted by an DCW. By the DCW condition, we know that it cannot accept languages with words that have infinite conditions, so the language $L=\left\{w:|w|_{a}=\infty\right\}$ cannot be accepted by a DCW. Let $\varphi=G(a)$. One can see that $\llbracket \varphi \rrbracket=L$ and therefore we constructed an LTL formula that accepts L.

