
Automata and Logic on Infinite Objects 2

Shay Kricheli

December 2019

Question 1

To answer this question, let us remind:

Definition 0.1. A language L ⊆ Σw is non-counting if and only if:

∃n0 ∈ N s.t. ∀n ≥ n0 ; ∀u ∈ Σ∗, v ∈ Σ+, w ∈ Σw ; uvnw ∈ L ⇐⇒ uvn+1w ∈ L

In this question, we are to complete the proof for the following:

Claim 0.2. For every LTL formula ϕ, the set JϕK is non-counting.

The proof is by structural induction on ϕ and we are to complete the case where ϕ = ϕ1Uϕ2. Let
ϕ = ϕ1Uϕ2. Let us denote L1 = Jϕ1K and L2 = Jϕ2K. By the induction hypothesis, we have that L1

and L2 are non-counting. Let n1, n2 be the constants promised by the induction hypothesis for L1

and L2 respectively such that:

∀n ≥ n1 ; ∀u ∈ Σ∗, v ∈ Σ+, w ∈ Σw ; uvnw ∈ L1 ⇐⇒ uvn+1w ∈ L1

∀n ≥ n2 ; ∀u ∈ Σ∗, v ∈ Σ+, w ∈ Σw ; uvnw ∈ L2 ⇐⇒ uvn+1w ∈ L2

By the definition of a model of a LTL formula, these correspond to:

∀n ≥ n1 ; ∀u ∈ Σ∗, v ∈ Σ+, w ∈ Σw ; uvnw |= ϕ1 ⇐⇒ uvn+1w |= ϕ1

∀n ≥ n2 ; ∀u ∈ Σ∗, v ∈ Σ+, w ∈ Σw ; uvnw |= ϕ2 ⇐⇒ uvn+1w |= ϕ2

Let us choose n0 = max{n1, n2}+ 1 and let n ∈ N such that n > n0. We saw in class that:

∀u ∈ Σ∗, v ∈ Σ+, w ∈ Σw ; uvnw |= ϕ1Uϕ2 =⇒ uvn+1w |= ϕ1Uϕ2

We are to show that:

∀u ∈ Σ∗, v ∈ Σ+, w ∈ Σw ; uvn+1w |= ϕ1Uϕ2 =⇒ uvnw |= ϕ1Uϕ2

Let u ∈ Σ∗, v ∈ Σ+, w ∈ Σw and let us assume that uvn+1w |= ϕ1Uϕ2. By the definition of the
”until” operator - this implies:

∃k s.t. uvn+1w[k..] |= ϕ2 ∧ ∀j < k ; uvn+1w[j..] |= ϕ1

Let k be the least such k. Let us now consider two cases:

1

• k < |u|+ |v|

In that case we have:

uvn+1w[k..] = uv[k..]vnw ∧ ∀j < k ; uvn+1w[j..] = uv[j..]vnw

Let u′ = uv and n′ = n − 1. We know that: n > max(n1, n2) + 1 and therefore n′ = n − 1 >
max(n1, n2) and thus the induction hypothesis applies to n′. Thus:

uvn+1w[k..] = uv[k..]vnw = u′[k..]vn
′+1w = u′vn

′+1w[k..] ∧

∀j < k ; uvn+1w[j..] = uv[j..]nw = u′[j..]vn
′+1w = u′vn

′+1w[j..]

→ u′vn
′+1w[k..] |= ϕ2 ∧ ∀j < k ; u′vn

′+1w[j..] |= ϕ1

and by the induction hypothesis we have:

u′vn
′
w[k..] |= ϕ2 ∧ ∀j < k ; u′vn

′
w[j..] |= ϕ1

which is equivalent to:

uvvn−1w[k..] = uvnw[k..] |= ϕ2 ∧ ∀j < k ; uvvn−1w[j..] = uvnw[j..] |= ϕ1

and thus uvnw |= ϕ1Uϕ2.

• k ≥ |u|+ |v|

In that case, let us consider uvn+1w[i..] It may be that it equals u′vmw[i..] for m < n0, so
the induction hypothesis does not apply in that case. However, uvn+1w[k..] |= ϕ2 implies
uvnw[k − |v|..] |= ϕ2 since they agree on the inspected suffix. From the same arguments,
∀(|u|+ |v|) ≤ j < k ; uvnw[j − |v|..] |= ϕ1.

For j < (|u| + |v|) from the same explanation presented above (case k < |u| + |v|), we get
that ∀j < (|u|+ |v|) ; uvnw[j..] |= ϕ1

Therefore, uvn+1w |= ϕ1Uϕ2 =⇒ uvnw |= ϕ1Uϕ2

2

Question 2

We saw in class that LTL ⊆ NBW, thus, for each of the formulas ψi, we will present an NBW Bi over
Σ = 2AP , such that JBiK = JψiK. Let us consider the following:
ϕ0 = Gp ∨Gq
¬ϕ0 = ¬(Gp ∨Gq) = ¬Gp ∧ ¬Gq = F¬p ∧ F¬q
ϕ1 = GFp
¬ϕ1 = ¬GFp = F¬(Fp) = FG¬p
ϕ2 = GFp −→ GFq
¬ϕ2 = ¬(GFp −→ GFq) = GFp ∧ ¬GFq = GFp ∧ F¬(Fq) = GFp ∧ FG¬q
ϕ3 = FGp ∧GFp
Let us construct the automatons:

ψ1 = ¬ϕ0 ∧ ϕ1¬ϕ2 = (F¬p ∧ F¬q) ∧ (GFp) ∧ (GFp ∧ FG¬q) = F¬q ∧GFp ∧ FG¬q

B1 : v0 v1 v2 v3
¬p

p T

¬q

p ∧ ¬q
¬p ∧ ¬q

¬p ∧ ¬q

p ∧ ¬q

ψ2 = ¬ϕ0 ∧ ¬ϕ1 ∧ ϕ2 = (F¬p ∧ F¬q) ∧ (FG¬p) ∧ (GFp −→ GFq) = F¬q ∧ FG¬p

B2 : v0 v1 v2
¬q

q T

¬p

¬p

ψ3 = ¬ϕ0 ∧ ϕ2 ∧ ϕ3 = (F¬p ∧ F¬q) ∧ (GFp −→ GFq) ∧ (FGp ∧GFp) = F¬p ∧ F¬q ∧ FGp ∧GFq

B3 : v0 v1

v2 v3 v4 v5

p ∧ ¬q

T

¬p ∧ q
¬p ∧ ¬q

¬q

¬p

p

T

T

T p p ∧ q

p ∧ q

p ∧ ¬q

ψ4 = ¬ϕ0 ∧ ¬ϕ2 ∧ ϕ3 = (F¬p ∧ F¬q) ∧ (GFp ∧ FG¬q) ∧ (FGp ∧GFp) = F¬p ∧ F¬q ∧GFp ∧ FG¬q ∧ FGp =

F¬p ∧ FGp ∧ FG¬q

B4 : v0 v1 v2
¬q

p T

p ∧ ¬q

p ∧ ¬q

3

Question 3

(1)

Let us consider the following restricted grammer:

ϕ :: r | ¬ϕ | ϕ1 ∨ ϕ2 | r 7→ ϕ

where r is a regular expression. Let us denote:

r Z⇒ ϕ ::= r 7→ (true, ϕ)

ϕ1 ∧ ϕ2 ::= ¬(¬ϕ1 ∧ ¬ϕ2)

In this question we are to describe the following languages using PSL formulas in that restricted
grammar:

• p never holds:

(true)+ 7→ ¬p

• p holds on every third cycle, starting from an even position:

(true · true)∗ · (true · p) Z⇒ G(true · true · p)

• p1 holds on every third cycle in which p2 holds:(
(¬p2)∗ · p2 · (¬p2)∗ · p2 · (¬p2)∗ · p2

)+

7→ p1

• p1 holds forever long starting the cycle where p2 held for 3 consecutive cycles:((
¬
(
true∗ · p2 · p2 · p2 · true∗

))
· (p2 ∧ p1)3 · true∗ 7→ p1

)
∧((

true∗ ·
(
(p2 ∧ ¬p1) · p2 · p2 + p2 · (p2 ∧ ¬p1) · p2 + p2 · p2 · (p2 ∧ ¬p1)

)
7→ false

)

(2)

Let us consider the following PSL formulas:

ϕ1 = (p1 ∧Xp2) U (p3 ∧Xp4)

ϕ2 = (p3 · p4) ∨
(

(p1 · p2) ∧ (p1 · p2)+ Z⇒ (p3 · p4)
)

In this section we are to prove or give a counterexample for the claim: “the following two PSL
formulas are equivalent”. Let us provide a counterexample and let us assume a word is formulated
using 4-dimensional vectors such that the i’th coordinate corresponds to pi for every i ∈ [1, 4]. Let:

w =


1
0
0
0




0
1
1
0




0
0
0
1


Claim 0.3. w |=PSL ϕ1

4

Proof. Since p3 ∈ w[2] and p4 ∈ w[3] we have that for k = 2, w[k..] |=PSL (p3 ∧Xp4). Moreover, since
p1 ∈ w[1] and p2 ∈ w[2] we have that w[1..] |=PSL (p1 ∧Xp2). Since j = 1 is the only index that holds
j < k, by the definition of the ”until” operator, we have that w |=PSL (p1∧Xp2) U (p3∧Xp4) = ϕ1.

Claim 0.4. w 6|=PSL ϕ2

Proof. Since p3 6∈ w[1] we have that w 6|=PSL (p3 · p4). Since p1 ∈ w[1] and p2 ∈ w[2] we have
that for k = 2, w[..k] ∈ Jp1 · p2K and thus w |=PSL (p1 · p2), but since p3 6∈ w[3] we have that

w[k + 1..] 6|=PSL (p3 · p4) and thus w 6|=PSL

(
(p1 · p2) ∧ (p1 · p2)+ Z⇒ (p3 · p4)

)
. Thus w 6|=PSL

(p3 · p4) ∨
(

(p1 · p2) ∧ (p1 · p2)+ Z⇒ (p3 · p4)
)

= ϕ2.

Thus we have that ϕ1 and ϕ2 are not equivalent.

Question 4

In this question we are asked to decide for each of the given languages over Σ = 2{p,q} if they can
be accepted by an LTL formula and by a PSL formula. A point to notice is that LTL syntax is
subsumed by PSL syntax and therefore wherever we have an LTL formula for a language, it’s also the
corresponding PSL formula.

1. L1 = {w : p ∈ w[i] ∧ q /∈ w[i] ∀i ≥ 3}
Let us define the following formulas in their corresponding logic:
(i) LTL - X2p ∧X2G(¬q)
(ii) PSL - X2p ∧X2G(¬q)

2. L2 = {w : p ∈ w[i] for exactly three different i ∈ N};
(i) LTL - ¬pU(p ∧X(¬pU(p ∧X(¬pU(p ∧XG(¬p))))))
(ii) PSL - another way to phrase (¬p)∗· (p)· (¬p)∗· (p)· (¬p)∗· (p)·G(¬p)

3. L3 = {w : The cardinality of {i ∈ N : p ∈ w[i]} is finite and odd}
(i) LTL -

Claim 0.5. the language L3 is not non-counting.

Proof. For every odd n ∈ N. pnqω ∈ L3 but, pn+1qω /∈ L3

(ii) PSL - (¬((¬p)∗· p(¬p)∗· p · (¬p)∗)∗))G(¬p)

4. L4 = {w : The cardinality of {i ∈ N : p ∈ w[i]} and {i ∈ N : q ∈ w[i]} are finite and equal};

Claim 0.6. L4 is not is not definable by PSL formula, since LTL ⊂ PSL therefore cannot
defined by LTL.

Proof. we saw in class that PSL = NBW.
Assume towards contradiction that we have an NBW B s.t JBK = JL4K.
B = (Σ, Q,Q0, δ, F), since a NBW has a finite number of states,let |Q| = n. q, and p have to be
finite but the word is infinite , thus there has to be another letter that repeats itself infinitely
many times, let c be that letter. lets take a look at the word w = p2nq2ncω . Easy to see that
w ∈ L4, we can notice that the prefix w[..2n] which is p2n > n thus there has to be a state in
B that repeat twice, let it be qi. Let {q01

, .., qil , ..., qik , ..qj2n} be the run for that prefix, now
we can pump p2n in w, to w′ = p2n+m(k−l)q2ncω. w′ will repeat the loop from qi to qjm times,
continue with the same path of w and thus,eventually will accept too. It is clear that w′ /∈ L4,
in contradiction. Therefore L4 is not PSL definable.

5

Question 5

Let C = (Σ, Q, q0, δ, F) be a DCW such that JCK = L ⊆ Σω for some alphabet Σ = {σ1, σ2, ..., σ|Σ|}.
We are to write an S1S formula ψC satisfying JψCK = L. Let us denote the set of states of C as:
Q = {q1, q2, ..., q|Q|}. Since C is a DBW, it is deterministic and thus for every word w ∈ Σω, there is
only one corresponding run which we will denote as ρw.
Let w ∈ Σω be an input word to C and ρw = qρw0

qρw1
qρw2

... the only corresponding run of C on w.
Let us define for w and for each state qi ∈ Q a corresponding bounded variable in a form of a set Awi

that contains all the indices in which the run ρw passes at qi, as in:

Awi
= {j | qρwj

= qi}

Since qρw0
= q0, by definition we have: ρw0

= 0 ∈ Aw0
. Moreover, let us define for w and for each

letter σi ∈ Σ a corresponding set Bwi
that contains all the indices in which the word σi appears in w,

as in:
Bwi

= {j | w[j] = σi}

Let us define a formula ψC as follows:

∃Aw1
,∃Aw2

· · · ∃Aw|Q|

∀x

(|Q|∨
i=1

x ∈ Awi

)
∧
|Q|∧
i=1

(
x ∈ Awi →

|Q|∧
j=1
j 6=i

x /∈ Awj

)
∧

∀x

(|Σ|∨
i=1

x ∈ Bwi

)
∧
|Σ|∧
i=1

(
x ∈ Bwi

→
|Σ|∧
j=1
j 6=i

x /∈ Bwj

)
∧

0 ∈ S0 ∧

∀x
∨

(qi,σj ,qk)∈δ

x ∈ Awi
∧ x ∈ Bwj

∧ S(x) ∈ Awk
∧

∧
qi∈F

∃x ∀y (y ∈ Awi → x > y)

Let us provide an explanation for our construction:

1. The first line declares the existence of the bounded variables we defined earlier.

2. The second line corresponds to the fact that each natural number x ∈ N induces one position in
the run; x ∈ ρw and is associated with exactly one state q ∈ Q.

3. The third line corresponds to the fact that each natural number x ∈ N induces one position in
the run; x ∈ ρw and is associated with exactly one letter σ ∈ Σ.

4. The fourth line corresponds to fact we stated earlier that since C is deterministic, its initial state
is singular - which we denoted as q0.

5. The fifth line corresponds to fact that each natural number x ∈ N induces one element in the
transition function δ.

6. The sixth line corresponds to the co-Büchi acceptance condition in that each state in the set F
is reached a finite number of times.

6

Question 6

(1)

In this section we are to compare the expressive power of LTL and DBW.

Claim 0.7. DBW 6⊆ LTL
Proof. To prove so we’ll present a language accepted by a DBW that cannot be accepted by an LTL
formula. We saw in class that LTL cannot ”count” - as in for every LTL-formula ϕ, the set JϕK is
non-counting. Let Σ = {a, b} and let r = (aa)∗bω. We also saw in class that the language JrK is not
non-counting. Therefore it cannot be accepted by an LTL formula. Let us construct a DBW D that
accepts L:

q0start q1 q2 q3

b

a

a
b

Σ b

a

One can see that JDK = L and thus we constructed a DBW that accepts L.

Claim 0.8. LTL 6⊆ DBW
Proof. To prove so we’ll present a language accepted by an LTL formula that cannot be accepted by
an DBW. We saw in class that the language L = {w : |w|a <∞} cannot be accepted by a DBW. Let
ϕ = (a ∨ b) U G(b). One can see that JϕK = L and therefore we constructed an LTL formula that
accepts L.

(2)

In this section we are to compare the expressive power of LTL and DCW.

Claim 0.9. DCW 6⊆ LTL
Proof. To prove so we’ll present a language accepted by a DCW that cannot be accepted by an LTL
formula. Let us define again Σ = {a, b} and let r = (aa)∗bω. Let us construct a DCW C that accepts
L:

q0start q1 q2 q3

b

a

a
b

Σ b

a

One can see that JCK = L and thus we constructed a DBW that accepts L.

Claim 0.10. LTL 6⊆ DCW
Proof. To prove so we’ll present a language accepted by an LTL formula that cannot be accepted by
an DCW. By the DCW condition, we know that it cannot accept languages with words that have
infinite conditions, so the language L = {w : |w|a =∞} cannot be accepted by a DCW. Let ϕ = G(a).
One can see that JϕK = L and therefore we constructed an LTL formula that accepts L.

7

