
Automata and Logic on Infinite Objects 1

Shay Kricheli

November 2019

1 Question 1

Let r be an ω-regular expression and let Σ be an alphabet such that r ∈ Σ ∪ {∅, ·,ω ,+}. We’ll show
that there exists an NBW Br such that [[Br]] = [[r]].
Reminder: Let us recall that an NBW is a tuple Br = (Σ, Q,Q0,∆, F). For a run ρ = q0q1q2... let us
define inf(ρ) = {q ∈ Q | ∀i ∈ Nj > iqj = q} - the set of states visited infinitely often during the run
ρ. The Büchi acceptance condition is the set F ⊆ Q and a run ρ of a Büchi automaton is accepting
if it visits F infinitely often, as in if inf(ρ) ∩ F 6= ∅.
We’ll use complete structural induction on |r| - the length of r.

• Base case: Since r is a ω-regular expression, |r| > 0. Therefore, the base case will be for |r| = 1.
In that case, by the definition of ω-regular expressions, it must be that r = ∅. In that case, by
definition, [[r]] = [[∅]] = ∅. Let Br be an NBW with one non-accepting state.
Formally: Br = (Σ, Q,Q0,∆, F) such that:

Q = {q}
Q0 = {q}

∀σ ∈ Σ ; ∆(σ, q) = {q}
Fr = ∅

According to the Büchi acceptance condition - for any run ρ it will hold that: inf(ρ) ∩ F =
inf(ρ) ∩ ∅ = ∅ and therefore [[Br]] = ∅ = [[r]].

• Induction assumption: Let r be a ω-regular expression such that 1 < |r| < n. So there exists an
NBW Br such that [[Br]] = [[r]].

• Induction step: Let r be a ω-regular expression such that |r| = n > 1. Since |r| > 1, there exists
two ω-regular expression r1, r2 such that one of the following holds:

1. r = r1 + r2 where r1 and r2 are ω-regular expressions.

2. r = r1 · r2 where r1 is a regular expression and r2 is an ω-regular expressions.

3. r = rω1 where r1 is a regular expression.

In all these cases, it holds that |r1| < n and |r2| < n and so the induction assumption holds for
r1 and r2. Let us denote [[r1]] = L1 and [[r1]] = L2.
Let us now split into the 3 aforementioned cases:

1. r = r1 + r2:
From the induction assumption we’ll get that there exist two NBWs Br1 = (Σ, Qr1 , Q0r1

,∆r1 , Fr1)
and Br2 == (Σ, Qr2 , Q0r2

,∆r2 , Fr2) such that [[Br1]] = [[r1]] = L1 and [[Br2]] = [[r2]] = L2.
Applying the semantics function on both sides of the equation yields:

[[r]] = [[r1 + r2]] = [[r1]] ∪ [[r2]] = [[Br1]] ∪ [[Br2]] = L1 ∪ L2

1

We spoke in class of a construction for an NBW that accepts a union of two NBWs so we
will provide a short correctness argument: let Br = (Σ, Qr, Q0r ,∆r, Fr) be a NBA such
that:

Qr = Qr1 ∪Qr2
Q0r = Q0r1

∪Q0r2

∆r = ∆r1 ∪∆r2

Fr = Fr1 ∪ Fr2
Br starts with all the accepting states of Br1 and Br2 , transitions and accepts according to
them - so it accepts the language that is the union L1 ∪ L2. So it will hold that:

[[Br]] = L1 ∪ L2 = [[r]]

2. r = r1 · r2:
From the induction assumption we’ll get that: since r1 is a regular expression, there exists
an NFW Nr1 = (Σ, Qr1 , Q0r1

,∆r1 , Fr1) such that [[Nr1]] = [[r1]] = L1 and since r2 is
an ω-regular expression, there exists an NBW Br2 = (Σ, Qr2 , Q0r2

,∆r2 , Fr2) such that
[[Br2]] = [[r2]] = L2. Applying the semantics function on both sides of the equation yields:

[[r]] = [[r1 · r2]] = [[r1]] · [[r2]] = [[Nr1]] · [[Br2]] = L1 · L2

We will provide a construction for an NBW that accepts the language L1 · L2 using Nr1
and Br2 .
Let Br = (Σ, Qr, Q0r ,∆r, Fr) where:

Qr = Qr1 ∪Qr2
Q0r = Q0r1

∆r = ∆r1 ∪∆r2 ∪ {(q, ε,Q0r2
) | q ∈ Fr1}

Fr = Fr2

Claim: [[Br]] = L1 · L2 We’ll prove this by showing two-directional containment:
[[Br]] ⊆ L1 · L2 : Let w ∈ [[Br]]. Since w got accepted by Br, that means that for some
run ρ: inf(ρ) ∩ Fr 6= ∅. That means that the run visited infinitely many times in some
q2 ∈ Fr = Fr2 ⊆ Qr2 (∗). By the definition of ∆r - ρ moved to q2 only by visiting first
some q1 ∈ Fr1 . Since q1 is an accepting state of Nr1 - that means that there exists a prefix
of ω - u ∈ Σ∗ such that u ∈ [[Nr1]] = L1. From (∗) we’ll get that there exists a suffix of ω -
v ∈ Σω such that v ∈ [[Br2]] = L2. Therefore w = u · v ∈ L1·.
L1 · L2 ⊆ [[Br]] : Let w ∈ L1 · L2. That means there exists a prefix of ω - u ∈ L1 = [[Nr1]]
and a suffix of ω - v ∈ L2 = [[Br2]] such that w = u · v. Since u ∈ [[Nr1]], there exists a
run ρ1 = q1q2...qn of Nr1 on u such that qn ∈ Fr1 . Since v ∈ [[Br2]], there exists a run
ρ2 = q′1q

′
2... of Br2 on v such that inf(ρ2) ∩ Fr 6= ∅ and therefore there exists a state

qk ∈ Fr = Fr2 that is visited infinitely many times in ρ2. From these two facts and the
construction of Br as non-deterministic - there exists a run ρ3 of Br on w that visits qn and
visits qk infinitely many times - and therefore accepts w. So w ∈ [[Br]].

3. r = rω1 :
From the induction assumption we’ll get that: since r1 is a regular expression, there ex-
ists an NFW Nr1 = (Σ, Qr1 , Q0r1

,∆r1 , Fr1) such that [[Nr1]] = [[r1]] = L1. Applying the
semantics function on both sides of the equation yields:

[[r]] = [[rω1]] = [[r]]ω = Lω1

2

We will provide a construction for an NBW that accepts the language Lω1 using Nr1 .
Let Br = (Σ, Qr, Q0r ,∆r, Fr) where:

Qr = Qr1 ∪ {q∗}
Q0r = Q0r1

∆r = ∆r1 ∪ {(qf , ε, {q∗}), ((q∗, ε), Q0r1
) | qf ∈ Fr1}

Fr = {q∗}

Claim: [[Br]] = Lω1 . We’ll prove this by showing two-directional containment:
[[Br]] ⊆ Lω1 : Let w ∈ [[Br]]. Since w got accepted by Br, that means that for some run
ρ: inf(ρ) ∩ Fr1 6= ∅. That means that the run visited infinitely many times in the only
accepting state - q∗. By the construction of Br - that means that the run visited infinitely
many times in states that are accepting in Nr1 . That means that w is a word composed of
infinitely many words from L1 - and therefore w ∈ Lω1 .
Lω1 ⊆ [[Br]] : Let w ∈ Lω1 . That means that w is composed of infinitely many words from
L1. From the construction of Br, that means that there exists a run ρ that visited infinitely
many times in states that are accepting in Nr1 and then visits the accepting state in Br -
q∗. Since ρ visits the accepting state q∗ infinitely many times - inf(ρ) ∩ Fr1 6= ∅ and so
w ∈ [[Br]]. �.

2 Question 2

We will provide a counterexample: Let Σ = {a, b} and let us consider the following ω-regular language:

L = {w ∈ Σω | the number of a’s in w is either even or infinite}

This language is ω-regular as one can see that for r = (b∗ab∗a)∗bω ∪ Σ∗(Σ∗aΣ∗)ω:

[[r]] = [[(b∗ab∗a)∗bω ∪ Σ∗(Σ∗aΣ∗)ω]] = L

Let us construct a DBW that accepts L in the following manner: B = (Σ, Q, q0, δ, F) where:

Q = {q1, q2, q3}
q0 = q1

δ(q1, b) = q1 ; δ(q1, a) = q2 ; δ(q2, b) = q2

δ(q2, a) = q3; ; δ(q3, b) = q3 ; δ(q3, a) = q2

F = {q1, q3}

Let us draw B:

q1start q2 q3

b b

a

a

a

Now, let u = ε and v = a. So uv = a and |v| = 1. One can see that B is a minimal DBW L but any
run on uvω = aω induces a sequence of states with a cycle of length 2 > 1 = |v|.

3

3 Question 3

The claim is correct. To prove so, we’ll show first that DBGW = DBW. It is trivial that NBW ⊆
NBGW (as an NBW is a specific case of a NBGW that has one set of accepting states). We showed
in class that DBW (NBW, so we’ll get: DBGW = DBW (NBW = NBGW that corresponds to
DBGW (NBGW.
Lemma: DBGW = DBW: We’ll prove this by showing two-directional containment:
DBW ⊆ DBGW: This side is trivial as a DBW is a specific case of a DBGW that has one set of
accepting states.
DBGW ⊆ DBW: We will provide a construction that converts a DBGW to a DBW:
Let G = (Σ, Q, q0, δ, {F1, ..., Fn}) be a DBGW. Let B = (Σ, Qb, q0b , δb, Fb) such that:

Qb = Q× {1, ..., n}
q0b = (q0, 1)

δb = {((q, i), σ, (q′, j)) | (q, σ, q′) ∈ δ, if q ∈ Fi : j = ((i+ 1) mod n) else j = i}
Fb = F1 × {1}

Claim: [[G]] = [[B]] We’ll prove this by showing two-directional containment:
[[G]] ⊆ [[B]] : Let w ∈ [[G]. Since w got accepted by G - by the generalized Büchi automaton acceptance
condition that means that there exists a run ρG of G on w such that:

∀i ∈ {1, ..., n} ; inf(ρG) ∩ Fi 6= ∅
→ ∀i ∈ {1, ..., n} ; ∃qi ∈ Q : qi ∈ inf(ρG) ∩ Fi

→ ∀i ∈ {1, ..., n} ; ∃qi ∈ Q : qi ∈ inf(ρG) ∧ qi ∈ Fi

That means that there exist in ρG infinitely many configurations of the form:

(qi, σiui)
σi=⇒ (qji , ui)

for all i ∈ {1, ..., n} when ui is a suffix of w and σi ∈ Σ, such that qi ∈ Fi. By that fact and the
construction of B, that means that there exist a run ρB with infinitely many configurations of the
form:

((qi, i), σiui)
σi=⇒ ((qki , ((i+ 1) mod n), ui)

for all i ∈ {1, ..., n}. That means that specifically, for i = 1 there are infinitely many configurations
in ρB of the form:

((q1, 1), σ1u1)
σ1=⇒ ((qk1 , (2 mod n), u1)

such that q1 ∈ F1. That means that (q1, 1) ∈ inf(ρB). Since q1 ∈ F1 - we have that (q1, 1) ∈
F1 × {1} = Fb and thus inf(ρB) ∩ Fb 6= ∅. Therefore - w ∈ [[B]].
[[B]] ⊆ [[G]] : Let w ∈ [[B]]. Since w got accepted by B - that means that there exists a run ρB of B on
w such that:

inf(ρB) ∩ Fb = inf(ρB) ∩ F1 × {1} 6= ∅
→ ∃(q1, 1) ∈ Qb : (q1, 1) ∈ inf(ρB) ∩ F1 × {1}

→ ∃(q1, 1) ∈ Qb : (q1, 1) ∈ inf(ρB) ∧ (q1, 1) ∈ F1 × {1}
when q1 ∈ F1. That means that ρB visits infinitely many times in (q1, 1). By the construction of B -
that means that there are infinitely many configurations in ρB of the form:

((q1, 1), σ1σ2...σnu)
σ1=⇒ ((qj1 , ((1 + 1) mod n), σ2...σnu) = ((qj1 , (2 mod n), σ2...σnu) = ((qj1 , 2, σ2...σnu)

assuming without loss of generality that n > 2, when u is a suffix of w and for all i ∈ {1, ..., n} ; σi ∈ Σ,
such that q1 ∈ F1. By the construction of B - since ρB visits infinitely many times in (q1, 1), there
must be a configurations in ρB of the form:

((qj1 , 2, σ2...σnu)
∗

=⇒ ((q1, 1), u′)

4

where u′ is a suffix of u. Once again by the construction of B - that means that for all i ∈ {1, ..., n} -
ρB visits infinitely many times in (qi, i) and by the definition of δb we get that there for all i ∈ {1, ..., n}
there exist qi ∈ Fi. Therefore, once again by the definition of δb - there exists a run ρG with infinitely
many configurations of the form:

(qi, σiui)
σi=⇒ (qki , ui)

for all i ∈ {1, ..., n} when ui is a suffix of w and σi ∈ Σ, such that qi ∈ Fi. That means that
∀i ∈ {1, ..., n} ; inf(ρG) ∩ Fi 6= ∅ and by the generalized Büchi automaton acceptance condition that
means that w ∈ [[B]]. �

4 Question 4

Let Σn = {0, 1, ..., n− 1} and let ⊕n denote addition modulo n. Let:

Ln =

{
w ∈ Σωn

∣∣∣∣ ∃k ∈ Σn : the letter k appears finitely often in w

and the letter k ⊕n 1 appears infinitely often in w

}
We will provide a an ω-automaton A such that [[A]] = Ln that has O(n) states. We will choose the
NRW - nondeterministic Rabin automaton A = (Σn, Q,Q0,∆, R) where:

Q = Σn = {0, 1, ..., n− 1}
Q0 = Q

∆ = {(i, σ, σ) | i ∈ Q = Σn, σ ∈ Σn}
R = {({k ⊕n 1}, {k}) | k ∈ Q}

One can see that |Q| = O(n).
Correctness argument: The states of the automaton are all the letters in Σn - the numbers from 0 to
n − 1. Given a word w ∈ Σωn , a run ρ of A on w will pass through the states corresponding to the
letters in the word - as defined by the transition function ∆. By the definition of the Rabin acceptance
condition, given R′ = {(Gi, Bi) |∀ 1 ≤ i ≤ k : Gi, Bi ⊆ Q}, - a run ρ′ is accepting iff:

∃i : inf(ρ′) ∩Gi 6= ∅ ∧ inf(ρ′) ∩Bi = ∅

By that and the definition of R - ρ is accepting iff:

∃k : inf(ρ′) ∩ {k ⊕n 1} 6= ∅ ∧ inf(ρ′) ∩ {k} = ∅

That means that ρ is accepting iff it passes infinitely many times in k⊕n 1 and finitely many times in
k, and that corresponds exactly to the condition for w to be in Ln.

5 Question 5

Let R1 and R2 be finitary properties, as in R1, R2 ⊆ Σ∗.

5.1 Section a

In this section we are to show that recurrence properties are closed under union. Let us recall that a
recurrence property of a finitary set V is an infinitary property W that contains all the infinite words

5

that have infinite prefixes in V , as in W = RPref (V) = {w ∈ Σω | ∀i∃j > i : w[...j] ∈ V }. So let us
assume that there exist two recurrence properties P1 and P2 such that:

P1 = RPref (R1)

P2 = RPref (R2)

We are to show that P1 ∪ P2 is also a recurrence property.
Claim: P1 ∪ P2 = RPref (R1 ∪R2) We’ll prove so by simultaneous two-directional containment. Let
w ∈ Σω.

w ∈ P1 ∪ P2 ⇔ w ∈ RPref (R1) ∪RPref (R2)⇔ w ∈ RPref (R1) ∨ w ∈ RPref (R2)

⇔ w ∈ {w′ ∈ Σω | ∀i∃j1 > i : w′[...j1] ∈ R1} ∨ w ∈ {w′ ∈ Σω | ∀i∃j2 > i : w′[...j2] ∈ R2}
⇔ ∀i∃j1 : j1 > i : w[...j1] ∈ R1 ∨ ∀i∃j2 > i : w[...j2] ∈ R2 ⇔ ∀i∃j = max{j1, j2} > i : w[...j] ∈ R1 ∪R2

⇔ w ∈ {w′ ∈ Σω | ∀i∃j > i : w′[...j] ∈ R1 ∪R2} ⇔ w ∈ RPref (R1 ∪R2) �

5.2 Section b

In this section we are to show that RPref (R1)∩RPref (R2) 6= RPref (R1∩R2). To do so, we’ll provide
a counterexample. Let us consider Σ = {a} and:

R1 = {ai | i is prime }
R2 = {ai | i is not prime }

Of course, R1 ∩R2 = ∅ so by definition RPref (R1 ∩R2) = RPref (∅) = ∅.
Claim: aω ∈ RPref (R1) ∩RPref (R2) Since there are infinitely many prime numbers:

∀i ∈ N : ∃j > i : j is prime → ∀i∃j > i : aω[...j] = aj ∈ R1 → aω ∈ RPref (R1)

And since there are infinitely many non-prime numbers:

∀i ∈ N : ∃j > i : j is not prime → ∀i∃j > i : aω[...j] = aj ∈ R2 → aω ∈ RPref (R2)

So aω ∈ RPref (R1) ∩RPref (R2) �. Finally, we get RPref (R1 ∩R2) 6= RPref (R1) ∩RPref (R2).

5.3 Section c

Let:

minex(R1, R2) =

{
u2 ∈ R2

∣∣∣∣ ∃u1 ∈ R1 : u1 ≺ u2 ∧ @u′2 ∈ R2 : u1 ≺ u′2 ≺ u2
}

Let us observe that minex(R1, R2) is the language of all the words from R2 that have a proper prefix
u1 in R1 and are minimal in that property, in a sense that for all u2 ∈ minex(R1, R2) there aren’t
any other words from R2 that have the same proper prefix u1 and are a proper prefix of u2.
Claim: RPref (R1) ∩RPref (R2) = RPref (minex(R1, R2)) We’ll prove so by two-directional contain-
ment.
RPref (R1) ∩RPref (R2) ⊆ RPref (minex(R1, R2)) : Let w ∈ RPref (R1) ∩RPref (R2). Then:

w ∈ RPref (R1) ∧ w ∈ RPref (R2)

=⇒ w ∈ {w′ ∈ Σω | ∀i∃j1 > i : w′[...j1] ∈ R1} ∧ w ∈ {w′ ∈ Σω | ∀i∃j2 > i : w′[...j2] ∈ R2}
=⇒ ∀i∃j1 > i : w[...j1] ∈ R1 ∧ ∀i∃j2 > i : w[...j2] ∈ R2

Since for all i ∈ N, there exists some index j1 ∈ N such that w[...j1] ∈ R1 and some index j2 ∈ N such
that w[...j2] ∈ R2, minex(R1, R2) will depend on the relation between j1 and j2.
Let i ∈ N. Let us split into two cases:

6

1. If the corresponding indices j1, j2 hold that there isn’t any j3 ∈ N such that: j1 < j3 < j2
and w[...j1] ≺ w[...j3] ≺ w[...j2] then by the definition of minex we’ll have that w[...j2] ∈
minex(R1, R2). This holds for all i ∈ N, so we’ll have by the definition of RPref that w ∈
RPref (minex(R1, R2)).

2. If there exists j3 ∈ N such that: j1 < j3 < j2 and w[...j1] ≺ w[...j3] ≺ w[...j2] then let j∗3 be the
minimal index that holds for that condition. Then by the definition of minex we’ll have that
w[...j∗3] ∈ minex(R1, R2). This once again holds for all i ∈ N, then we’ll have by the definition
of RPref that w ∈ RPref (minex(R1, R2)).

RPref (minex(R1, R2)) ⊆ RPref (R1) ∩RPref (R2) : Let w ∈ RPref (minex(R1, R2)). Then:

w ∈ RPref (minex(R1, R2))

=⇒ w ∈ {w′ ∈ Σω | ∀i∃j > i : w′[...j] ∈ minex(R1, R2)}
=⇒ ∀i∃j > i : w[...j] ∈ minex(R1, R2)

=⇒ ∀i∃j > i : w[...j] ∈ R2 : ∃u1 ∈ R1 : u1 ≺ w[...j] ∧ @u′2 ∈ R2 : u1 ≺ u′2 ≺ w[...j]

=⇒ ∀i∃j > i : w[...j] ∈ R2 : ∃k < j : w[...k] ∈ R1 : w[...k] ≺ w[...j] ∧ @u′2 ∈ R2 : w[...k] ≺ u′2 ≺ w[...j]

Let i ∈ N. The corresponding indices j, k hold that j > i and j > k. Let us split into two cases:

1. If k ≥ i then we have:

w[...j] ∈ R2 ∧ w[...k] ∈ R1 : w[...k] ≺ w[...j] ∧ @u′2 ∈ R2 : w[...k] ≺ u′2 ≺ w[...j]

=⇒ w ∈ {w′ ∈ Σω | ∀i∃j1 > i : w′[...j1] ∈ R1} ∧ w ∈ {w′ ∈ Σω | ∀i∃j2 > i : w′[...j2] ∈ R2}
=⇒ w ∈ RPref (R1) ∧ w ∈ RPref (R2)

=⇒ w ∈ RPref (R1) ∩RPref (R2)

2. If k < i then let us observe that there exists j′ > j such that:

∃w[...j′] ∈ minex(R1, R2)

=⇒ ∃m < j′ : w[...m] ∈ R1 : w[...m] ≺ w[...j′] ∧ @u′2 ∈ R2 : w[...m] ≺ u′2 ≺ w[...j′]

Let us assume towards contradiction that m < i. Then we’ll get that:

∃w[...i] ∈ R2 : w[...m] ≺ w[...i] ≺ w[...j′]

thus contradicting the former reasoning. Therefore we have that there exists m ∈ N such that
m ≥ i and:

w[...j] ∈ R2 ∧ w[...m] ∈ R1 : w[...m] ≺ w[...j] ∧ @u′2 ∈ R2 : w[...m] ≺ u′2 ≺ w[...j]

=⇒ w ∈ {w′ ∈ Σω | ∀i∃j1 > i : w′[...j1] ∈ R1} ∧ w ∈ {w′ ∈ Σω | ∀i∃j2 > i : w′[...j2] ∈ R2}
=⇒ w ∈ RPref (R1) ∧ w ∈ RPref (R2)

=⇒ w ∈ RPref (R1) ∩RPref (R2) �

5.4 Section d

In this section we are to show that recurrence properties are closed under intersection. In the last
section we proved that given two finitary properties R1 and R2 - the intersection of their corresponding
recurrence properties P1 = RPref (R1) and P2 = RPref (R2), as in RPref (R1)∩RPref (R2) is a recur-
rence relation of the finitary property minex(R1, R2), and so using this construction - the recurrence
property is closed under intersection. �

7

5.5 Section e

In this section we are to show that persistence properties are closed under union and intersection. Let
R1 and R2 be finitary properties, as in R1, R2 ⊆ Σ∗. From the duality properties of the linguistic
characterizations we saw in class, we know that for a finitary property R:

(∗) RPref (R) = PPref (R)

Closure under union: Let us consider the PPref (R1) ∪ PPref (R2). From (∗):

PPref (R1) ∪ PPref (R2) = RPref (R1) ∪RPref (R2)

From De Morgan’s laws:

RPref (R1) ∪RPref (R2) = RPref (R1) ∩RPref (R2)

From the construction shown in the previous sections for an intersection of two recurrence properties:

RPref (R1) ∩RPref (R2) = RPref (minex(R1, R2))

=⇒ RPref (R1) ∩RPref (R2) = RPref (minex(R1, R2))

From (∗) again:

RPref (minex(R1, R2)) = PPref (minex(R1, R2))

So finally:

PPref (R1) ∪ PPref (R2) = PPref (minex(R1, R2))

So we saw a construction for a closure to a union of two persistence properties. �
Closure under intersection: Let us consider the PPref (R1) ∩ PPref (R2). From (∗):

PPref (R1) ∩ PPref (R2) = RPref (R1) ∩RPref (R2)

From De Morgan’s laws:

RPref (R1) ∩RPref (R2) = RPref (R1) ∪RPref (R2)

From the construction shown in the previous sections for a union of two recurrence properties:

RPref (R1) ∪RPref (R2) = RPref (R1 ∪R2)

=⇒ RPref (R1) ∪RPref (R2) = RPref (R1 ∪R2)

From (∗) and De Morgan’s laws:

RPref (R1 ∪R2) = PPref (R1 ∪R2) = PPref (R1 ∩R2)

So finally we have:
PPref (R1) ∩ PPref (R2) = PPref (R1 ∩R2)

So we saw a construction for a closure to an intersection of two persistence properties. �

6 Question 6

Let L ⊆ Σω be an infinitary language. Let us consider the following definition of a finite words
relation: For x, y ∈ Σ∗ we have that:

x ≡L y ⇔ ∀z ∈ Σω : xz ∈ L⇔ yz ∈ L

8

6.1 Section i

In this section we are to prove that the relation ≡L is an equivalence relation. To do so, by definition,
we’ll need to show that ≡L is transitive, reflexive and symmetric.
Transitivity: Let x, y, z ∈ Σ∗ and let us assume that x ≡L y and y ≡L z. We have to show that
x ≡L z. Since x ≡L y, by definition we have that:

(∗) ∀ψ ∈ Σω : xψ ∈ L⇔ yψ ∈ L

Since y ≡L z, by definition we have that:

(∗∗) ∀ψ ∈ Σω : yψ ∈ L⇔ zψ ∈ L

Let ψ ∈ Σω and let us assume that xψ ∈ L. From (∗) we’ll get yψ ∈ L. From (∗∗) we’ll get zψ ∈ L.
Now let us assume that xψ /∈ L. From (∗) we’ll get yψ /∈ L. From (∗∗) we’ll get zψ /∈ L. So we got
xψ ∈ L⇔ zψ ∈ L and by definition x ≡L z.
Reflexivity: Let x ∈ Σ∗. We have to show that x ≡L x. It is obvious that:

∀ψ ∈ Σω : xψ ∈ L⇔ xψ ∈ L

so x ≡L x.
Syymertricity: Let x, y ∈ Σ∗ and let us assume that x ≡L y. We have to show that y ≡L z. Since
x ≡L y, by definition we have that:

∀ψ ∈ Σω : xψ ∈ L⇔ yψ ∈ L

That of course means that:
∀ψ ∈ Σω : yψ ∈ L⇔ xψ ∈ L

so we have that y ≡L x. �

6.2 Section ii

In this section we are to prove or refute the following claim: If L is accepted by a DBA then the
number of equivalence classes in ≡L is finite.
Claim: The claim is correct To prove so, let L ⊆ Σω and let us assume that L is accepted by a DBW
D = (Σ, Q, q0, δ, F), as in [[D]] = L. Let us denote for any finite word w ∈ Σ∗ : rw to be the only run
of D on w (due to D being deterministic) and qw to be the final state in that run (which exists because
w is final and D is deterministic), as in rw = q0q1...qw. Moreover, let us denote for any infinite word
w ∈ Σω : ρw to be the only run of D on w and let us call a sub-run a partial run of some run.
Lemma: For all x, y ∈ Σω if x 6≡L y then qx 6= qy.
To prove so, we’ll assume towards contradiction that qx = qy. Since x 6≡L y that means that (without
loss of generality) there exists z ∈ Σ∗ such that xz ∈ L and yz /∈ L. Since we assumed that [[D]] = L,
that means that xz is accepted by D while yz is not. Since we assumed that qx = qy, that means that
the runs of D on x and y - rx and ry respectively are:

(q0, xz)
∗

=⇒ (qx, z)

(q0, yz)
∗

=⇒ (qy, z)

and since qx = qy:

(q0, xz)
∗

=⇒ (qx, z)

(q0, yz)
∗

=⇒ (qx, z)

9

Since xz ∈ L, then it holds that the inf(ρxz) ∩ F 6= ∅. That means that there exists an accepting
state qf ∈ F such that the run ρxz visits it infinitely many times. Since rx is final, that means that
the sub-run of ρxz after rx also visits infinitely many times in qf . Since qx = qy, the sub-run of ρyz
after ry is that same as the sub-run of ρxz after rx - so the sub-run of ρyz after ry also visits infinitely
many times in qf and since ry is final, that means that ρyz also visits infinitely many times in qf and
so we get that yz ∈ [[D]] = L, contradicting that yz /∈ L �.
Let us now return to the original proof: let us assume towards contradiction that the number of
equivalence classes in ≡L is infinite. That means that there exist infinitely many words w1, w2, ... ∈ Σ∗

such that ∀i 6= j : wi 6≡ wj . From the lemma we get that since ∀i 6= j : wi 6≡ wj - ∀i 6= j : qi 6≡ qj .
That means that we get infinitely many different states, contradicting that the number of states in D
is final. �

6.3 Section iii

In this section we are to prove or refute the following claim: If L is accepted by a DBA then the
number of states in a minimal DBA is equivalent to the number of equivalence classes in ≡L.
Claim: The claim is incorrect To prove so, we’ll provide a counterexample. Let D = (Σ, Q, q0, δ, F)
be a DBA such that:

Q = {q1, q2}
q0 = q1

δ(q1, b) = q1 ; δ(q1, a) = q2

δ(q2, b) = q1 ; δ(q2, a) = q2

F = {q2}

Let us draw D:

q1start q2

b a
a

b

Let L = Σ∗aω. One can see that [[D]] = L, as in the language D accepts is the language of all words
that have infinite a’s in them. Since the condition of infinite a’ must be checked with an accepting
state, there has to be an additional state for words that does not have infinite a’ in them. So the
minimal number of states to accept L is 2 - the same number as in D and so it is a minimal DBA for
L. Since D only accepts words with infinite a’s, it has only one equivalence class, which is less that
the number of states in a minimal DBA that accepts it. So the claim is incorrect. �

10

