Automata and Logic on Infinite Objects 1

Shay Kricheli

November 2019

1 Question 1

Let r be an ω-regular expression and let Σ be an alphabet such that $r \in \Sigma \cup\left\{\emptyset, \cdot{ }^{\omega},+\right\}$. We'll show that there exists an NBW \mathcal{B}_{r} such that $\llbracket \mathcal{B}_{r} \rrbracket=\llbracket r \rrbracket$.
Reminder: Let us recall that an NBW is a tuple $\mathcal{B}_{r}=\left(\Sigma, Q, Q_{0}, \Delta, F\right)$. For a run $\rho=q_{0} q_{1} q_{2} \ldots$ let us define $\inf (\rho)=\left\{q \in Q \mid \forall i \in \mathbb{N} j>i q_{j}=q\right\}$ - the set of states visited infinitely often during the run ρ. The Büchi acceptance condition is the set $F \subseteq Q$ and a run ρ of a Büchi automaton is accepting if it visits F infinitely often, as in if $\inf (\rho) \cap F \neq \emptyset$.
We'll use complete structural induction on $|r|$ - the length of r.

- Base case: Since r is a ω-regular expression, $|r|>0$. Therefore, the base case will be for $|r|=1$. In that case, by the definition of ω-regular expressions, it must be that $r=\emptyset$. In that case, by definition, $\llbracket r \rrbracket=\llbracket \emptyset \rrbracket=\emptyset$. Let \mathcal{B}_{r} be an NBW with one non-accepting state.
Formally: $\mathcal{B}_{r}=\left(\Sigma, Q, Q_{0}, \Delta, F\right)$ such that:

$$
\begin{gathered}
Q=\{q\} \\
Q_{0}=\{q\} \\
\forall \sigma \in \Sigma ; \Delta(\sigma, q)=\{q\} \\
F_{r}=\emptyset
\end{gathered}
$$

According to the Büchi acceptance condition - for any run ρ it will hold that: $\inf (\rho) \cap F=$ $\inf (\rho) \cap \emptyset=\emptyset$ and therefore $\llbracket \mathcal{B}_{r} \rrbracket=\emptyset=\llbracket r \rrbracket$.

- Induction assumption: Let r be a ω-regular expression such that $1<|r|<n$. So there exists an

- Induction step: Let r be a ω-regular expression such that $|r|=n>1$. Since $|r|>1$, there exists two ω-regular expression r_{1}, r_{2} such that one of the following holds:

1. $r=r_{1}+r_{2}$ where r_{1} and r_{2} are ω-regular expressions.
2. $r=r_{1} \cdot r_{2}$ where r_{1} is a regular expression and r_{2} is an ω-regular expressions.
3. $r=r_{1}^{\omega}$ where r_{1} is a regular expression.

In all these cases, it holds that $\left|r_{1}\right|<n$ and $\left|r_{2}\right|<n$ and so the induction assumption holds for r_{1} and r_{2}. Let us denote $\llbracket r_{1} \rrbracket=L_{1}$ and $\llbracket r_{1} \rrbracket=L_{2}$.
Let us now split into the 3 aforementioned cases:

1. $r=r_{1}+r_{2}$:

From the induction assumption we'll get that there exist two NBWs $\mathcal{B}_{r_{1}}=\left(\Sigma, Q_{r_{1}}, Q_{0_{r_{1}}}, \Delta_{r_{1}}, F_{r_{1}}\right)$ and $\mathcal{B}_{r_{2}}==\left(\Sigma, Q_{r_{2}}, Q_{0_{r_{2}}}, \Delta_{r_{2}}, F_{r_{2}}\right)$ such that $\llbracket \mathcal{B}_{r_{1}} \rrbracket=\llbracket r_{1} \rrbracket=L_{1}$ and $\llbracket \mathcal{B}_{r_{2}} \rrbracket=\llbracket r_{2} \rrbracket=L_{2}$.
Applying the semantics function on both sides of the equation yields:

$$
\llbracket r \rrbracket=\llbracket r_{1}+r_{2} \rrbracket=\llbracket r_{1} \rrbracket \cup \llbracket r_{2} \rrbracket=\llbracket \mathcal{B}_{r_{1}} \rrbracket \cup \llbracket \mathcal{B}_{r_{2}} \rrbracket=L_{1} \cup L_{2}
$$

We spoke in class of a construction for an NBW that accepts a union of two NBWs so we will provide a short correctness argument: let $\mathcal{B}_{r}=\left(\Sigma, Q_{r}, Q_{0_{r}}, \Delta_{r}, F_{r}\right)$ be a NBA such that:

$$
\begin{aligned}
Q_{r} & =Q_{r_{1}} \cup Q_{r_{2}} \\
Q_{0_{r}} & =Q_{0_{r_{1}}} \cup Q_{0_{r_{2}}} \\
\Delta_{r} & =\Delta_{r_{1}} \cup \Delta_{r_{2}} \\
F_{r} & =F_{r_{1}} \cup F_{r_{2}}
\end{aligned}
$$

\mathcal{B}_{r} starts with all the accepting states of $\mathcal{B}_{r_{1}}$ and $\mathcal{B}_{r_{2}}$, transitions and accepts according to them - so it accepts the language that is the union $L_{1} \cup L_{2}$. So it will hold that:

$$
\llbracket \mathcal{B}_{r} \rrbracket=L_{1} \cup L_{2}=\llbracket r \rrbracket
$$

2. $r=r_{1} \cdot r_{2}$:

From the induction assumption we'll get that: since r_{1} is a regular expression, there exists an NFW $\mathcal{N}_{r_{1}}=\left(\Sigma, Q_{r_{1}}, Q_{0_{r_{1}}}, \Delta_{r_{1}}, F_{r_{1}}\right)$ such that $\llbracket \mathcal{N}_{r_{1}} \rrbracket=\llbracket r_{1} \rrbracket=L_{1}$ and since r_{2} is an ω-regular expression, there exists an NBW $\mathcal{B}_{r_{2}}=\left(\Sigma, Q_{r_{2}}, Q_{0_{r_{2}}}, \Delta_{r_{2}}, F_{r_{2}}\right)$ such that $\llbracket \mathcal{B}_{r_{2}} \rrbracket=\llbracket r_{2} \rrbracket=L_{2}$. Applying the semantics function on both sides of the equation yields:

$$
\llbracket r \rrbracket=\llbracket r_{1} \cdot r_{2} \rrbracket=\llbracket r_{1} \rrbracket \cdot \llbracket r_{2} \rrbracket=\llbracket \mathcal{N}_{r_{1}} \rrbracket \cdot \llbracket \mathcal{B}_{r_{2}} \rrbracket=L_{1} \cdot L_{2}
$$

We will provide a construction for an NBW that accepts the language $L_{1} \cdot L_{2}$ using $\mathcal{N}_{r_{1}}$ and $\mathcal{B}_{r_{2}}$.
Let $\mathcal{B}_{r}=\left(\Sigma, Q_{r}, Q_{0_{r}}, \Delta_{r}, F_{r}\right)$ where:

$$
\begin{gathered}
Q_{r}=Q_{r_{1}} \cup Q_{r_{2}} \\
Q_{0_{r}}=Q_{0_{r_{1}}} \\
\Delta_{r}=\Delta_{r_{1}} \cup \Delta_{r_{2}} \cup\left\{\left(q, \varepsilon, Q_{0_{r_{2}}}\right) \mid q \in F_{r_{1}}\right\} \\
F_{r}=F_{r_{2}}
\end{gathered}
$$

Claim: $\llbracket \mathcal{B}_{r} \rrbracket=L_{1} \cdot L_{2}$ We'll prove this by showing two-directional containment:
$\llbracket \mathcal{B}_{r} \rrbracket \subseteq L_{1} \cdot L_{2}$: Let $w \in \llbracket \mathcal{B}_{r} \rrbracket$. Since w got accepted by \mathcal{B}_{r}, that means that for some run $\rho: \inf (\rho) \cap F_{r} \neq \emptyset$. That means that the run visited infinitely many times in some $q_{2} \in F_{r}=F_{r_{2}} \subseteq Q_{r_{2}}(*)$. By the definition of $\Delta_{r}-\rho$ moved to q_{2} only by visiting first some $q_{1} \in F_{r_{1}}$. Since q_{1} is an accepting state of $\mathcal{N}_{r_{1}}$ - that means that there exists a prefix of $\omega-u \in \Sigma^{*}$ such that $u \in \llbracket \mathcal{N}_{r_{1}} \rrbracket=L_{1}$. From (*) we'll get that there exists a suffix of ω $v \in \Sigma^{\omega}$ such that $v \in \llbracket \mathcal{B}_{r_{2}} \rrbracket=L_{2}$. Therefore $w=u \cdot v \in L_{1}$.
$\underline{\left.L_{1} \cdot L_{2} \subseteq \llbracket \mathcal{B}_{r} \rrbracket: \text { Let } w \in L_{1} \cdot L_{2} \text {. That means there exists a prefix of } \omega-u \in L_{1}=\llbracket \mathcal{N}_{r_{1}} \rrbracket\right]}$ and a suffix of $\omega-v \in L_{2}=\llbracket \mathcal{B}_{r_{2}} \rrbracket$ such that $w=u \cdot v$. Since $u \in \llbracket \mathcal{N}_{r_{1}} \rrbracket$, there exists a run $\rho_{1}=q_{1} q_{2} \ldots q_{n}$ of $\mathcal{N}_{r_{1}}$ on u such that $q_{n} \in F_{r_{1}}$. Since $v \in \llbracket \mathcal{B}_{r_{2}} \rrbracket$, there exists a run $\rho_{2}=q_{1}^{\prime} q_{2}^{\prime} \ldots$ of $\mathcal{B}_{r_{2}}$ on v such that $\inf \left(\rho_{2}\right) \cap F_{r} \neq \emptyset$ and therefore there exists a state $q_{k} \in F_{r}=F_{r_{2}}$ that is visited infinitely many times in ρ_{2}. From these two facts and the construction of \mathcal{B}_{r} as non-deterministic - there exists a run ρ_{3} of \mathcal{B}_{r} on w that visits q_{n} and visits q_{k} infinitely many times - and therefore accepts w. So $w \in \llbracket \mathcal{B}_{r} \rrbracket$.
3. $r=r_{1}^{\omega}$:

From the induction assumption we'll get that: since r_{1} is a regular expression, there exists an NFW $\mathcal{N}_{r_{1}}=\left(\Sigma, Q_{r_{1}}, Q_{0_{r_{1}}}, \Delta_{r_{1}}, F_{r_{1}}\right)$ such that $\llbracket \mathcal{N}_{r_{1}} \rrbracket=\llbracket r_{1} \rrbracket=L_{1}$. Applying the semantics function on both sides of the equation yields:

$$
\llbracket r \rrbracket=\llbracket r_{1}^{\omega} \rrbracket=\llbracket r \rrbracket^{\omega}=L_{1}^{\omega}
$$

We will provide a construction for an NBW that accepts the language L_{1}^{ω} using $\mathcal{N}_{r_{1}}$. Let $\mathcal{B}_{r}=\left(\Sigma, Q_{r}, Q_{0_{r}}, \Delta_{r}, F_{r}\right)$ where:

$$
\begin{gathered}
Q_{r}=Q_{r_{1}} \cup\left\{q^{*}\right\} \\
Q_{0_{r}}=Q_{0_{r_{1}}} \\
\Delta_{r}=\Delta_{r_{1}} \cup\left\{\left(q_{f}, \varepsilon,\left\{q^{*}\right\}\right),\left(\left(q^{*}, \varepsilon\right), Q_{0_{r_{1}}}\right) \mid q_{f} \in F_{r_{1}}\right\} \\
F_{r}=\left\{q^{*}\right\}
\end{gathered}
$$

Claim: $\llbracket \mathcal{B}_{r} \rrbracket=L_{1}^{\omega}$. We'll prove this by showing two-directional containment:
$\llbracket \mathcal{B}_{r} \rrbracket \subseteq L_{1}^{\omega}:$ Let $w \in \llbracket \mathcal{B}_{r} \rrbracket$. Since w got accepted by \mathcal{B}_{r}, that means that for some run $\bar{\rho}$: $\inf (\rho) \cap F_{r_{1}} \neq \emptyset$. That means that the run visited infinitely many times in the only accepting state $-q^{*}$. By the construction of \mathcal{B}_{r} - that means that the run visited infinitely many times in states that are accepting in $\mathcal{N}_{r_{1}}$. That means that w is a word composed of infinitely many words from L_{1} - and therefore $w \in L_{1}^{\omega}$.
$L_{1}^{\omega} \subseteq \llbracket \mathcal{B}_{r} \rrbracket$: Let $w \in L_{1}^{\omega}$. That means that w is composed of infinitely many words from $\overline{L_{1}}$. From the construction of \mathcal{B}_{r}, that means that there exists a run ρ that visited infinitely many times in states that are accepting in $\mathcal{N}_{r_{1}}$ and then visits the accepting state in \mathcal{B}_{r} q^{*}. Since ρ visits the accepting state q^{*} infinitely many times - $\inf (\rho) \cap F_{r_{1}} \neq \emptyset$ and so $w \in \llbracket \mathcal{B}_{r} \rrbracket$.

2 Question 2

We will provide a counterexample: Let $\Sigma=\{a, b\}$ and let us consider the following ω-regular language:

$$
L=\left\{w \in \Sigma^{\omega} \mid \text { the number of } a \text { 's in } w \text { is either even or infinite }\right\}
$$

This language is ω-regular as one can see that for $r=\left(b^{*} a b^{*} a\right)^{*} b^{\omega} \cup \Sigma^{*}\left(\Sigma^{*} a \Sigma^{*}\right)^{\omega}$:

$$
\llbracket r \rrbracket=\llbracket\left(b^{*} a b^{*} a\right)^{*} b^{\omega} \cup \Sigma^{*}\left(\Sigma^{*} a \Sigma^{*}\right)^{\omega} \rrbracket=L
$$

Let us construct a DBW that accepts L in the following manner: $\mathcal{B}=\left(\Sigma, Q, q_{0}, \delta, F\right)$ where:

$$
\begin{gathered}
Q=\left\{q_{1}, q_{2}, q_{3}\right\} \\
q_{0}=q_{1} \\
\delta\left(q_{1}, b\right)=q_{1} ; \delta\left(q_{1}, a\right)=q_{2} ; \delta\left(q_{2}, b\right)=q_{2} \\
\delta\left(q_{2}, a\right)=q_{3} ; ; \delta\left(q_{3}, b\right)=q_{3} ; \delta\left(q_{3}, a\right)=q_{2} \\
F=\left\{q_{1}, q_{3}\right\}
\end{gathered}
$$

Let us draw \mathcal{B} :

Now, let $u=\epsilon$ and $v=a$. So $u v=a$ and $|v|=1$. One can see that \mathcal{B} is a minimal DBW L but any run on $u v^{\omega}=a^{\omega}$ induces a sequence of states with a cycle of length $2>1=|v|$.

3 Question 3

The claim is correct. To prove so, we'll show first that $\mathbb{D} \mathbb{B} \mathbb{G} \mathbb{W}=\mathbb{D} \mathbb{B} \mathbb{W}$. It is trivial that $\mathbb{N} \mathbb{B} \mathbb{W} \subseteq$ $\mathbb{N} \mathbb{B} \mathbb{G} \mathbb{W}$ (as an $\mathbb{N} \mathbb{B} \mathbb{W}$ is a specific case of a $\mathbb{N} \mathbb{B} \mathbb{G} \mathbb{W}$ that has one set of accepting states). We showed in class that $\mathbb{D} \mathbb{B} \mathbb{W} \subsetneq \mathbb{N} \mathbb{B} \mathbb{W}$, so we'll get: $\mathbb{D} \mathbb{B} \mathbb{G}=\mathbb{D} \mathbb{B} \mathbb{W} \subsetneq \mathbb{N} \mathbb{B} \mathbb{W}=\mathbb{N} \mathbb{B} \mathbb{G} \mathbb{W}$ that corresponds to $\mathbb{D B} \mathbb{G W} \subsetneq \mathbb{N B} \mathbb{G W}$.
Lemma: $\mathbb{D} \mathbb{B} \mathbb{G W}=\mathbb{D} \mathbb{B} \mathbb{W}$: We'll prove this by showing two-directional containment:
$\mathbb{D B} \mathbb{W} \subseteq \mathbb{D} \mathbb{B} \mathbb{G W}$: This side is trivial as a DBW is a specific case of a DBGW that has one set of accepting states.
$\mathbb{D} \mathbb{B} \mathbb{G W} \subseteq \mathbb{D} \mathbb{B} \mathbb{W}:$ We will provide a construction that converts a DBGW to a DBW:
Let $\mathcal{G}=\left(\Sigma, Q, q_{0}, \delta,\left\{F_{1}, \ldots, F_{n}\right\}\right)$ be a DBGW. Let $\mathcal{B}=\left(\Sigma, Q_{b}, q_{0_{b}}, \delta_{b}, F_{b}\right)$ such that:

$$
\begin{gathered}
Q_{b}=Q \times\{1, \ldots, n\} \\
q_{0_{b}}=\left(q_{0}, 1\right) \\
\delta_{b}=\left\{\left((q, i), \sigma,\left(q^{\prime}, j\right)\right) \mid\left(q, \sigma, q^{\prime}\right) \in \delta, \text { if } q \in F_{i}: j=((i+1) \bmod n) \text { else } j=i\right\} \\
F_{b}=F_{1} \times\{1\}
\end{gathered}
$$

Claim: $\llbracket \mathcal{G} \rrbracket=\llbracket \mathcal{B} \rrbracket$ We'll prove this by showing two-directional containment:
$\llbracket \mathcal{G} \rrbracket \subseteq \llbracket \mathcal{B} \rrbracket$: Let $w \in \llbracket \mathcal{G}]$. Since w got accepted by \mathcal{G} - by the generalized Büchi automaton acceptance condition that means that there exists a run ρ_{G} of \mathcal{G} on w such that:

$$
\begin{gathered}
\forall i \in\{1, \ldots, n\} ; \inf \left(\rho_{G}\right) \cap F_{i} \neq \emptyset \\
\rightarrow \forall i \in\{1, \ldots, n\} ; \exists q_{i} \in Q: q_{i} \in \inf \left(\rho_{G}\right) \cap F_{i} \\
\rightarrow \forall i \in\{1, \ldots, n\} ; \exists q_{i} \in Q: q_{i} \in \inf \left(\rho_{G}\right) \wedge q_{i} \in F_{i}
\end{gathered}
$$

That means that there exist in ρ_{G} infinitely many configurations of the form:

$$
\left(q_{i}, \sigma_{i} u_{i}\right) \stackrel{\sigma_{i}}{\Rightarrow}\left(q_{j_{i}}, u_{i}\right)
$$

for all $i \in\{1, \ldots, n\}$ when u_{i} is a suffix of w and $\sigma_{i} \in \Sigma$, such that $q_{i} \in F_{i}$. By that fact and the construction of \mathcal{B}, that means that there exist a run ρ_{B} with infinitely many configurations of the form:

$$
\left(\left(q_{i}, i\right), \sigma_{i} u_{i}\right) \stackrel{\sigma_{i}}{\Rightarrow}\left(\left(q_{k_{i}},((i+1) \bmod n), u_{i}\right)\right.
$$

for all $i \in\{1, \ldots, n\}$. That means that specifically, for $i=1$ there are infinitely many configurations in ρ_{B} of the form:

$$
\left(\left(q_{1}, 1\right), \sigma_{1} u_{1}\right) \stackrel{\sigma_{1}}{\Rightarrow}\left(\left(q_{k_{1}},(2 \bmod n), u_{1}\right)\right.
$$

such that $q_{1} \in F_{1}$. That means that $\left(q_{1}, 1\right) \in \inf \left(\rho_{B}\right)$. Since $q_{1} \in F_{1}$ - we have that $\left(q_{1}, 1\right) \in$ $F_{1} \times\{1\}=F_{b}$ and thus $\inf \left(\rho_{B}\right) \cap F_{b} \neq \emptyset$. Therefore $-w \in \llbracket \mathcal{B} \rrbracket$.
$\llbracket \mathcal{B} \rrbracket \subseteq \llbracket \mathcal{G} \rrbracket$: Let $w \in \llbracket \mathcal{B} \rrbracket$. Since w got accepted by \mathcal{B} - that means that there exists a run ρ_{B} of \mathcal{B} on w such that:

$$
\begin{gathered}
\inf \left(\rho_{B}\right) \cap F_{b}=\inf \left(\rho_{B}\right) \cap F_{1} \times\{1\} \neq \emptyset \\
\rightarrow \exists\left(q_{1}, 1\right) \in Q_{b}:\left(q_{1}, 1\right) \in \inf \left(\rho_{B}\right) \cap F_{1} \times\{1\} \\
\rightarrow \exists\left(q_{1}, 1\right) \in Q_{b}:\left(q_{1}, 1\right) \in \inf \left(\rho_{B}\right) \wedge\left(q_{1}, 1\right) \in F_{1} \times\{1\}
\end{gathered}
$$

when $q_{1} \in F_{1}$. That means that ρ_{B} visits infinitely many times in $\left(q_{1}, 1\right)$. By the construction of \mathcal{B} that means that there are infinitely many configurations in ρ_{B} of the form:
$\left(\left(q_{1}, 1\right), \sigma_{1} \sigma_{2} \ldots \sigma_{n} u\right) \stackrel{\sigma_{1}}{\Rightarrow}\left(\left(q_{j_{1}},((1+1) \bmod n), \sigma_{2} \ldots \sigma_{n} u\right)=\left(\left(q_{j_{1}},(2 \bmod n), \sigma_{2} \ldots \sigma_{n} u\right)=\left(\left(q_{j_{1}}, 2, \sigma_{2} \ldots \sigma_{n} u\right)\right.\right.\right.$
assuming without loss of generality that $n>2$, when u is a suffix of w and for all $i \in\{1, \ldots, n\} ; \sigma_{i} \in \Sigma$, such that $q_{1} \in F_{1}$. By the construction of \mathcal{B} - since ρ_{B} visits infinitely many times in $\left(q_{1}, 1\right)$, there must be a configurations in ρ_{B} of the form:

$$
\left(\left(q_{j_{1}}, 2, \sigma_{2} \ldots \sigma_{n} u\right) \stackrel{*}{\Rightarrow}\left(\left(q_{1}, 1\right), u^{\prime}\right)\right.
$$

where u^{\prime} is a suffix of u. Once again by the construction of \mathcal{B} - that means that for all $i \in\{1, \ldots, n\}-$ ρ_{B} visits infinitely many times in $\left(q_{i}, i\right)$ and by the definition of δ_{b} we get that there for all $i \in\{1, \ldots, n\}$ there exist $q_{i} \in F_{i}$. Therefore, once again by the definition of δ_{b} - there exists a run ρ_{G} with infinitely many configurations of the form:

$$
\left(q_{i}, \sigma_{i} u_{i}\right) \stackrel{\sigma_{i}}{\Rightarrow}\left(q_{k_{i}}, u_{i}\right)
$$

for all $i \in\{1, \ldots, n\}$ when u_{i} is a suffix of w and $\sigma_{i} \in \Sigma$, such that $q_{i} \in F_{i}$. That means that $\forall i \in\{1, \ldots, n\} ; \inf \left(\rho_{G}\right) \cap F_{i} \neq \emptyset$ and by the generalized Büchi automaton acceptance condition that means that $w \in \llbracket \mathcal{B} \rrbracket$.

4 Question 4

Let $\Sigma_{n}=\{0,1, \ldots, n-1\}$ and let \oplus_{n} denote addition modulo n. Let:

$$
\begin{gathered}
L_{n}=\left\{w \in \Sigma_{n}^{\omega} \mid \exists k \in \Sigma_{n}: \quad \text { the letter } k \text { appears finitely often in } w\right. \\
\text { and the letter } \left.k \oplus_{n} 1 \text { appears infinitely often in } w\right\}
\end{gathered}
$$

We will provide a an ω-automaton \mathcal{A} such that $\llbracket \mathcal{A} \rrbracket=L_{n}$ that has $O(n)$ states. We will choose the NRW - nondeterministic Rabin automaton $\mathcal{A}=\left(\Sigma_{n}, Q, Q_{0}, \Delta, R\right)$ where:

$$
\begin{gathered}
Q=\Sigma_{n}=\{0,1, \ldots, n-1\} \\
Q_{0}=Q \\
\Delta=\left\{(i, \sigma, \sigma) \mid i \in Q=\Sigma_{n}, \sigma \in \Sigma_{n}\right\} \\
R=\left\{\left(\left\{k \oplus_{n} 1\right\},\{k\}\right) \mid k \in Q\right\}
\end{gathered}
$$

One can see that $|Q|=O(n)$.
Correctness argument: The states of the automaton are all the letters in Σ_{n} - the numbers from 0 to $\overline{n-1}$. Given a word $w \in \Sigma_{n}^{\omega}$, a run ρ of \mathcal{A} on w will pass through the states corresponding to the letters in the word - as defined by the transition function Δ. By the definition of the Rabin acceptance condition, given $R^{\prime}=\left\{\left(G_{i}, B_{i}\right) \mid \forall 1 \leq i \leq k: G_{i}, B_{i} \subseteq Q\right\}$, - a run ρ^{\prime} is accepting iff:

$$
\exists i: \inf \left(\rho^{\prime}\right) \cap G_{i} \neq \emptyset \wedge \inf \left(\rho^{\prime}\right) \cap B_{i}=\emptyset
$$

By that and the definition of $R-\rho$ is accepting iff:

$$
\exists k: \inf \left(\rho^{\prime}\right) \cap\left\{k \oplus_{n} 1\right\} \neq \emptyset \wedge \inf \left(\rho^{\prime}\right) \cap\{k\}=\emptyset
$$

That means that ρ is accepting iff it passes infinitely many times in $k \oplus_{n} 1$ and finitely many times in k, and that corresponds exactly to the condition for w to be in L_{n}.

5 Question 5

Let R_{1} and R_{2} be finitary properties, as in $R_{1}, R_{2} \subseteq \Sigma^{*}$.

5.1 Section a

In this section we are to show that recurrence properties are closed under union. Let us recall that a recurrence property of a finitary set V is an infinitary property W that contains all the infinite words
that have infinite prefixes in V, as in $W=\mathcal{R}_{\operatorname{Pref}}(V)=\left\{w \in \Sigma^{\omega} \mid \forall i \exists j>i: w[\ldots j] \in V\right\}$. So let us assume that there exist two recurrence properties P_{1} and P_{2} such that:

$$
\begin{aligned}
& P_{1}=\mathcal{R}_{\text {Pref }}\left(R_{1}\right) \\
& P_{2}=\mathcal{R}_{\text {Pref }}\left(R_{2}\right)
\end{aligned}
$$

We are to show that $P_{1} \cup P_{2}$ is also a recurrence property.
Claim: $P_{1} \cup P_{2}=\mathcal{R}_{\text {Pref }}\left(R_{1} \cup R_{2}\right)$ We'll prove so by simultaneous two-directional containment. Let $\bar{w} \in \Sigma^{\omega}$.

$$
\begin{gathered}
w \in P_{1} \cup P_{2} \Leftrightarrow w \in \mathcal{R}_{\text {Pref }}\left(R_{1}\right) \cup \mathcal{R}_{\text {Pref }}\left(R_{2}\right) \Leftrightarrow w \in \mathcal{R}_{\text {Pref }}\left(R_{1}\right) \vee w \in \mathcal{R}_{\text {Pref }}\left(R_{2}\right) \\
\Leftrightarrow w \in\left\{w^{\prime} \in \Sigma^{\omega} \mid \forall i \exists j_{1}>i: w^{\prime}\left[\ldots j_{1}\right] \in R_{1}\right\} \vee w \in\left\{w^{\prime} \in \Sigma^{\omega} \mid \forall i \exists j_{2}>i: w^{\prime}\left[\ldots j_{2}\right] \in R_{2}\right\} \\
\Leftrightarrow \forall i \exists j_{1}: j_{1}>i: w\left[\ldots j_{1}\right] \in R_{1} \vee \forall i \exists j_{2}>i: w\left[\ldots j_{2}\right] \in R_{2} \Leftrightarrow \forall i \exists j=\max \left\{j_{1}, j_{2}\right\}>i: w[\ldots j] \in R_{1} \cup R_{2} \\
\Leftrightarrow w \in\left\{w^{\prime} \in \Sigma^{\omega} \mid \forall i \exists j>i: w^{\prime}[\ldots j] \in R_{1} \cup R_{2}\right\} \Leftrightarrow w \in \mathcal{R}_{\text {Pref }}\left(R_{1} \cup R_{2}\right)
\end{gathered}
$$

5.2 Section b

In this section we are to show that $\mathcal{R}_{\text {Pref }}\left(R_{1}\right) \cap \mathcal{R}_{\text {Pref }}\left(R_{2}\right) \neq \mathcal{R}_{\text {Pref }}\left(R_{1} \cap R_{2}\right)$. To do so, we'll provide a counterexample. Let us consider $\Sigma=\{a\}$ and:

$$
\begin{gathered}
R_{1}=\left\{a^{i} \mid i \text { is prime }\right\} \\
R_{2}=\left\{a^{i} \mid i \text { is not prime }\right\}
\end{gathered}
$$

Of course, $R_{1} \cap R_{2}=\emptyset$ so by definition $\mathcal{R}_{\text {Pref }}\left(R_{1} \cap R_{2}\right)=\mathcal{R}_{\text {Pref }}(\emptyset)=\emptyset$.
Claim: $a^{\omega} \in \mathcal{R}_{\text {Pref }}\left(R_{1}\right) \cap \mathcal{R}_{\text {Pref }}\left(R_{2}\right)$ Since there are infinitely many prime numbers:

$$
\forall i \in \mathbb{N}: \exists j>i: j \text { is prime } \rightarrow \forall i \exists j>i: a^{\omega}[\ldots j]=a^{j} \in R_{1} \rightarrow a^{\omega} \in \mathcal{R}_{\text {Pref }}\left(R_{1}\right)
$$

And since there are infinitely many non-prime numbers:

$$
\forall i \in \mathbb{N}: \exists j>i: j \text { is not prime } \rightarrow \forall i \exists j>i: a^{\omega}[\ldots j]=a^{j} \in R_{2} \rightarrow a^{\omega} \in \mathcal{R}_{\text {Pref }}\left(R_{2}\right)
$$

So $a^{\omega} \in \mathcal{R}_{\text {Pref }}\left(R_{1}\right) \cap \mathcal{R}_{\text {Pref }}\left(R_{2}\right) \boldsymbol{■}$. Finally, we get $\mathcal{R}_{\text {Pref }}\left(R_{1} \cap R_{2}\right) \neq \mathcal{R}_{\text {Pref }}\left(R_{1}\right) \cap \mathcal{R}_{\text {Pref }}\left(R_{2}\right)$.

5.3 Section c

Let:

$$
\operatorname{minex}\left(R_{1}, R_{2}\right)=\left\{u_{2} \in R_{2} \mid \exists u_{1} \in R_{1}: u_{1} \prec u_{2} \wedge \nexists u_{2}^{\prime} \in R_{2}: u_{1} \prec u_{2}^{\prime} \prec u_{2}\right\}
$$

Let us observe that minex $\left(R_{1}, R_{2}\right)$ is the language of all the words from R_{2} that have a proper prefix u_{1} in R_{1} and are minimal in that property, in a sense that for all $u_{2} \in \operatorname{minex}\left(R_{1}, R_{2}\right)$ there aren't any other words from R_{2} that have the same proper prefix u_{1} and are a proper prefix of u_{2}.
Claim: $\mathcal{R}_{\text {Pref }}\left(R_{1}\right) \cap \mathcal{R}_{\operatorname{Pref}}\left(R_{2}\right)=\mathcal{R}_{\operatorname{Pref}}\left(\operatorname{minex}\left(R_{1}, R_{2}\right)\right)$ We'll prove so by two-directional containment.
$\underline{\mathcal{R}}_{\text {Pref }}\left(R_{1}\right) \cap \mathcal{R}_{\text {Pref }}\left(R_{2}\right) \subseteq \mathcal{R}_{\text {Pref }}\left(\operatorname{minex}\left(R_{1}, R_{2}\right)\right)$: Let $w \in \mathcal{R}_{\text {Pref }}\left(R_{1}\right) \cap \mathcal{R}_{\text {Pref }}\left(R_{2}\right)$. Then:

$$
\begin{gathered}
w \in \mathcal{R}_{\text {Pref }}\left(R_{1}\right) \wedge w \in \mathcal{R}_{\text {Pref }}\left(R_{2}\right) \\
\Longrightarrow w \in\left\{w^{\prime} \in \Sigma^{\omega} \mid \forall i \exists j_{1}>i: w^{\prime}\left[\ldots j_{1}\right] \in R_{1}\right\} \wedge w \in\left\{w^{\prime} \in \Sigma^{\omega} \mid \forall i \exists j_{2}>i: w^{\prime}\left[\ldots j_{2}\right] \in R_{2}\right\} \\
\Longrightarrow \forall i \exists j_{1}>i: w\left[\ldots j_{1}\right] \in R_{1} \wedge \forall i \exists j_{2}>i: w\left[\ldots j_{2}\right] \in R_{2}
\end{gathered}
$$

Since for all $i \in \mathbb{N}$, there exists some index $j_{1} \in \mathbb{N}$ such that $w\left[\ldots j_{1}\right] \in R_{1}$ and some index $j_{2} \in \mathbb{N}$ such that $w\left[\ldots j_{2}\right] \in R_{2}$, minex $\left(R_{1}, R_{2}\right)$ will depend on the relation between j_{1} and j_{2}.
Let $i \in \mathbb{N}$. Let us split into two cases:

1. If the corresponding indices j_{1}, j_{2} hold that there isn't any $j_{3} \in \mathbb{N}$ such that: $j_{1}<j_{3}<j_{2}$ and $w\left[\ldots j_{1}\right] \prec w\left[\ldots j_{3}\right] \prec w\left[\ldots j_{2}\right]$ then by the definition of minex we'll have that $w\left[\ldots j_{2}\right] \in$ $\operatorname{minex}\left(R_{1}, R_{2}\right)$. This holds for all $i \in \mathbb{N}$, so we'll have by the definition of $\mathcal{R}_{\text {Pref }}$ that $w \in$ $\mathcal{R}_{\text {Pref }}\left(\operatorname{minex}\left(R_{1}, R_{2}\right)\right)$.
2. If there exists $j_{3} \in \mathbb{N}$ such that: $j_{1}<j_{3}<j_{2}$ and $w\left[\ldots j_{1}\right] \prec w\left[\ldots j_{3}\right] \prec w\left[\ldots j_{2}\right]$ then let j_{3}^{*} be the minimal index that holds for that condition. Then by the definition of minex we'll have that $w\left[\ldots j_{3}^{*}\right] \in \operatorname{minex}\left(R_{1}, R_{2}\right)$. This once again holds for all $i \in \mathbb{N}$, then we'll have by the definition of $\mathcal{R}_{\text {Pref }}$ that $w \in \mathcal{R}_{\text {Pref }}\left(\operatorname{minex}\left(R_{1}, R_{2}\right)\right)$.
$\mathcal{R}_{\text {Pref }}\left(\operatorname{minex}\left(R_{1}, R_{2}\right)\right) \subseteq \mathcal{R}_{\text {Pref }}\left(R_{1}\right) \cap \mathcal{R}_{\text {Pref }}\left(R_{2}\right):$ Let $w \in \mathcal{R}_{\text {Pref }}\left(\operatorname{minex}\left(R_{1}, R_{2}\right)\right)$. Then:

$$
\begin{gathered}
w \in \mathcal{R}_{\operatorname{Pref}}\left(\operatorname{minex}\left(R_{1}, R_{2}\right)\right) \\
\Longrightarrow w \in\left\{w^{\prime} \in \Sigma^{\omega} \mid \forall i \exists j>i: w^{\prime}[\ldots j] \in \operatorname{minex}\left(R_{1}, R_{2}\right)\right\} \\
\Longrightarrow \forall i \exists j>i: w[\ldots j] \in \operatorname{minex}\left(R_{1}, R_{2}\right) \\
\Longrightarrow \forall i \exists j>i: w[\ldots j] \in R_{2}: \exists u_{1} \in R_{1}: u_{1} \prec w[\ldots j] \wedge \nexists u_{2}^{\prime} \in R_{2}: u_{1} \prec u_{2}^{\prime} \prec w[\ldots j] \\
\Longrightarrow \forall i \exists j>i: w[\ldots j] \in R_{2}: \exists k<j: w[\ldots k] \in R_{1}: w[\ldots k] \prec w[\ldots j] \wedge \nexists u_{2}^{\prime} \in R_{2}: w[\ldots k] \prec u_{2}^{\prime} \prec w[\ldots j]
\end{gathered}
$$

Let $i \in \mathbb{N}$. The corresponding indices j, k hold that $j>i$ and $j>k$. Let us split into two cases:

1. If $k \geq i$ then we have:

$$
\begin{gathered}
w[\ldots j] \in R_{2} \wedge w[\ldots k] \in R_{1}: w[\ldots k] \prec w[\ldots j] \wedge \nexists u_{2}^{\prime} \in R_{2}: w[\ldots k] \prec u_{2}^{\prime} \prec w[\ldots j] \\
\Longrightarrow w \in\left\{w^{\prime} \in \Sigma^{\omega} \mid \forall i \exists j_{1}>i: w^{\prime}\left[\ldots j_{1}\right] \in R_{1}\right\} \wedge w \in\left\{w^{\prime} \in \Sigma^{\omega} \mid \forall i \exists j_{2}>i: w^{\prime}\left[\ldots j_{2}\right] \in R_{2}\right\} \\
\Longrightarrow w \in \mathcal{R}_{\text {Pref }}\left(R_{1}\right) \wedge w \in \mathcal{R}_{\text {Pref }}\left(R_{2}\right) \\
\Longrightarrow w \in \mathcal{R}_{\text {Pref }}\left(R_{1}\right) \cap \mathcal{R}_{\text {Pref }}\left(R_{2}\right)
\end{gathered}
$$

2. If $k<i$ then let us observe that there exists $j^{\prime}>j$ such that:

$$
\begin{gathered}
\exists w\left[\ldots j^{\prime}\right] \in \operatorname{minex}\left(R_{1}, R_{2}\right) \\
\Longrightarrow \exists m<j^{\prime}: w[\ldots m] \in R_{1}: w[\ldots m] \prec w\left[\ldots j^{\prime}\right] \wedge \nexists u_{2}^{\prime} \in R_{2}: w[\ldots m] \prec u_{2}^{\prime} \prec w\left[\ldots j^{\prime}\right]
\end{gathered}
$$

Let us assume towards contradiction that $m<i$. Then we'll get that:

$$
\exists w[\ldots i] \in R_{2}: w[\ldots m] \prec w[\ldots i] \prec w\left[\ldots j^{\prime}\right]
$$

thus contradicting the former reasoning. Therefore we have that there exists $m \in \mathbb{N}$ such that $m \geq i$ and:

$$
\begin{gathered}
w[\ldots j] \in R_{2} \wedge w[\ldots m] \in R_{1}: w[\ldots m] \prec w[\ldots j] \wedge \nexists u_{2}^{\prime} \in R_{2}: w[\ldots m] \prec u_{2}^{\prime} \prec w[\ldots j] \\
\Longrightarrow w \in\left\{w^{\prime} \in \Sigma^{\omega} \mid \forall i \exists j_{1}>i: w^{\prime}\left[\ldots j_{1}\right] \in R_{1}\right\} \wedge w \in\left\{w^{\prime} \in \Sigma^{\omega} \mid \forall i \exists j_{2}>i: w^{\prime}\left[\ldots j_{2}\right] \in R_{2}\right\} \\
\Longrightarrow w \in \mathcal{R}_{\text {Pref }}\left(R_{1}\right) \wedge w \in \mathcal{R}_{\text {Pref }}\left(R_{2}\right) \\
\Longrightarrow w \in \mathcal{R}_{\text {Pref }}\left(R_{1}\right) \cap \mathcal{R}_{\text {Pref }}\left(R_{2}\right)
\end{gathered}
$$

5.4 Section d

In this section we are to show that recurrence properties are closed under intersection. In the last section we proved that given two finitary properties R_{1} and R_{2} - the intersection of their corresponding recurrence properties $P_{1}=\mathcal{R}_{\text {Pref }}\left(R_{1}\right)$ and $P_{2}=\mathcal{R}_{\text {Pref }}\left(R_{2}\right)$, as in $\mathcal{R}_{\text {Pref }}\left(R_{1}\right) \cap \mathcal{R}_{\text {Pref }}\left(R_{2}\right)$ is a recurrence relation of the finitary property $\operatorname{minex}\left(R_{1}, R_{2}\right)$, and so using this construction - the recurrence property is closed under intersection.

5.5 Section e

In this section we are to show that persistence properties are closed under union and intersection. Let R_{1} and R_{2} be finitary properties, as in $R_{1}, R_{2} \subseteq \Sigma^{*}$. From the duality properties of the linguistic characterizations we saw in class, we know that for a finitary property R :

$$
(*) \overline{\mathcal{R}_{\text {Pref }}(R)}=\mathcal{P}_{\text {Pref }}(\bar{R})
$$

Closure under union: Let us consider the $\mathcal{P}_{\text {Pref }}\left(R_{1}\right) \cup \mathcal{P}_{\text {Pref }}\left(R_{2}\right)$. From $(*)$:

$$
\mathcal{P}_{\text {Pref }}\left(R_{1}\right) \cup \mathcal{P}_{\text {Pref }}\left(R_{2}\right)=\overline{\mathcal{R}_{\text {Pref }}\left(\overline{R_{1}}\right)} \cup \overline{\mathcal{R}_{\text {Pref }}\left(\overline{R_{2}}\right)}
$$

From De Morgan's laws:

$$
\overline{\mathcal{R}_{\text {Pref }}\left(\overline{R_{1}}\right)} \cup \overline{\mathcal{R}_{\text {Pref }}\left(\overline{R_{2}}\right)}=\overline{\mathcal{R}_{\text {Pref }}\left(\overline{R_{1}}\right) \cap \mathcal{R}_{\text {Pref }}\left(\overline{R_{2}}\right)}
$$

From the construction shown in the previous sections for an intersection of two recurrence properties:

$$
\begin{aligned}
& \mathcal{R}_{\text {Pref }}\left(\overline{R_{1}}\right) \cap \mathcal{R}_{\text {Pref }}\left(\overline{R_{2}}\right)=\mathcal{R}_{\text {Pref }}\left(\operatorname{minex}\left(\overline{R_{1}}, \overline{R_{2}}\right)\right) \\
\Longrightarrow & \overline{\mathcal{R}_{\text {Pref }}\left(\overline{R_{1}}\right) \cap \mathcal{R}_{\text {Pref }}\left(\overline{R_{2}}\right)}=\overline{\mathcal{R}_{\text {Pref }}\left(\operatorname{minex}\left(\overline{R_{1}}, \overline{R_{2}}\right)\right)}
\end{aligned}
$$

From (*) again:

$$
\overline{\mathcal{R}_{\text {Pref }}\left(\operatorname{minex}\left(\overline{R_{1}}, \overline{R_{2}}\right)\right)}=\mathcal{P}_{\text {Pref }}\left(\overline{\operatorname{minex}\left(\overline{R_{1}}, \overline{R_{2}}\right)}\right)
$$

So finally:

$$
\mathcal{P}_{\text {Pref }}\left(R_{1}\right) \cup \mathcal{P}_{\text {Pref }}\left(R_{2}\right)=\mathcal{P}_{\text {Pref }}\left(\overline{\operatorname{minex}\left(\overline{R_{1}}, \overline{R_{2}}\right)}\right)
$$

So we saw a construction for a closure to a union of two persistence properties. Closure under intersection: Let us consider the $\mathcal{P}_{\text {Pref }}\left(R_{1}\right) \cap \mathcal{P}_{\text {Pref }}\left(R_{2}\right)$. From $(*)$:

$$
\mathcal{P}_{\text {Pref }}\left(R_{1}\right) \cap \mathcal{P}_{\text {Pref }}\left(R_{2}\right)=\overline{\mathcal{R}_{\text {Pref }}\left(\overline{R_{1}}\right)} \cap \overline{\mathcal{R}_{\text {Pref }}\left(\overline{R_{2}}\right)}
$$

From De Morgan's laws:

$$
\overline{\mathcal{R}_{\text {Pref }}\left(\overline{R_{1}}\right)} \cap \overline{\mathcal{R}_{\text {Pref }}\left(\overline{R_{2}}\right)}=\overline{\mathcal{R}_{\text {Pref }}\left(\overline{R_{1}}\right) \cup \mathcal{R}_{\text {Pref }}\left(\overline{R_{2}}\right)}
$$

From the construction shown in the previous sections for a union of two recurrence properties:

$$
\begin{aligned}
& \mathcal{R}_{\text {Pref }}\left(\overline{R_{1}}\right) \cup \mathcal{R}_{\text {Pref }}\left(\overline{R_{2}}\right)=\mathcal{R}_{\text {Pref }}\left(\overline{R_{1}} \cup \overline{R_{2}}\right) \\
\Longrightarrow & \left.\overline{\mathcal{R}_{\text {Pref }}\left(\overline{R_{1}}\right) \cup \mathcal{R}_{\text {Pref }}\left(\overline{R_{2}}\right)}=\overline{\mathcal{R}_{\text {Pref }}\left(\overline{R_{1}} \cup \overline{R_{2}}\right.}\right)
\end{aligned}
$$

From (*) and De Morgan's laws:

So finally we have:

$$
\mathcal{P}_{\text {Pref }}\left(R_{1}\right) \cap \mathcal{P}_{\text {Pref }}\left(R_{2}\right)=\mathcal{P}_{\text {Pref }}\left(R_{1} \cap R_{2}\right)
$$

So we saw a construction for a closure to an intersection of two persistence properties.

6 Question 6

Let $L \subseteq \Sigma^{\omega}$ be an infinitary language. Let us consider the following definition of a finite words relation: For $x, y \in \Sigma^{*}$ we have that:

$$
x \equiv_{L} y \Leftrightarrow \forall z \in \Sigma^{\omega}: x z \in L \Leftrightarrow y z \in L
$$

6.1 Section i

In this section we are to prove that the relation \equiv_{L} is an equivalence relation. To do so, by definition, we'll need to show that \equiv_{L} is transitive, reflexive and symmetric.
Transitivity: Let $x, y, z \in \Sigma^{*}$ and let us assume that $x \equiv_{L} y$ and $y \equiv_{L} z$. We have to show that $x \equiv_{L} z$. Since $x \equiv_{L} y$, by definition we have that:

$$
(*) \forall \psi \in \Sigma^{\omega} \quad: x \psi \in L \Leftrightarrow y \psi \in L
$$

Since $y \equiv_{L} z$, by definition we have that:

$$
(* *) \forall \psi \in \Sigma^{\omega} \quad: y \psi \in L \Leftrightarrow z \psi \in L
$$

Let $\psi \in \Sigma^{\omega}$ and let us assume that $x \psi \in L$. From $(*)$ we'll get $y \psi \in L$. From $(* *)$ we'll get $z \psi \in L$. Now let us assume that $x \psi \notin L$. From ($*$) we'll get $y \psi \notin L$. From ($* *$) we'll get $z \psi \notin L$. So we got $x \psi \in L \Leftrightarrow z \psi \in L$ and by definition $x \equiv_{L} z$.
Reflexivity: Let $x \in \Sigma^{*}$. We have to show that $x \equiv_{L} x$. It is obvious that:

$$
\forall \psi \in \Sigma^{\omega}: x \psi \in L \Leftrightarrow x \psi \in L
$$

so $x \equiv{ }_{L} x$.
 $x \equiv_{L} y$, by definition we have that:

$$
\forall \psi \in \Sigma^{\omega}: x \psi \in L \Leftrightarrow y \psi \in L
$$

That of course means that:

$$
\forall \psi \in \Sigma^{\omega}: y \psi \in L \Leftrightarrow x \psi \in L
$$

so we have that $y \equiv_{L} x$.

6.2 Section ii

In this section we are to prove or refute the following claim: If L is accepted by a DBA then the number of equivalence classes in \equiv_{L} is finite.
Claim: The claim is correct To prove so, let $L \subseteq \Sigma^{\omega}$ and let us assume that L is accepted by a DBW $\mathcal{D}=\left(\Sigma, Q, q_{0}, \delta, F\right)$, as in $\llbracket \mathcal{D} \rrbracket=L$. Let us denote for any finite word $w \in \Sigma^{*}: r_{w}$ to be the only run of \mathcal{D} on w (due to \mathcal{D} being deterministic) and q_{w} to be the final state in that run (which exists because w is final and \mathcal{D} is deterministic), as in $r_{w}=q_{0} q_{1} \ldots q_{w}$. Moreover, let us denote for any infinite word $w \in \Sigma^{\omega}: \rho_{w}$ to be the only run of \mathcal{D} on w and let us call a sub-run a partial run of some run. Lemma: For all $x, y \in \Sigma^{\omega}$ if $x \not 三_{L} y$ then $q_{x} \neq q_{y}$.
To prove so, we'll assume towards contradiction that $q_{x}=q_{y}$. Since $x \not 三_{L} y$ that means that (without loss of generality) there exists $z \in \Sigma^{*}$ such that $x z \in L$ and $y z \notin L$. Since we assumed that $\llbracket \mathcal{D} \rrbracket=L$, that means that $x z$ is accepted by \mathcal{D} while $y z$ is not. Since we assumed that $q_{x}=q_{y}$, that means that the runs of \mathcal{D} on x and $y-r_{x}$ and r_{y} respectively are:

$$
\begin{aligned}
& \left(q_{0}, x z\right) \stackrel{*}{\Rightarrow}\left(q_{x}, z\right) \\
& \left(q_{0}, y z\right) \stackrel{*}{\Rightarrow}\left(q_{y}, z\right)
\end{aligned}
$$

and since $q_{x}=q_{y}$:

$$
\begin{aligned}
& \left(q_{0}, x z\right) \stackrel{*}{\Rightarrow}\left(q_{x}, z\right) \\
& \left(q_{0}, y z\right) \stackrel{*}{\Rightarrow}\left(q_{x}, z\right)
\end{aligned}
$$

Since $x z \in L$, then it holds that the $\inf \left(\rho_{x z}\right) \cap F \neq \emptyset$. That means that there exists an accepting state $q_{f} \in F$ such that the run $\rho_{x z}$ visits it infinitely many times. Since r_{x} is final, that means that the sub-run of $\rho_{x z}$ after r_{x} also visits infinitely many times in q_{f}. Since $q_{x}=q_{y}$, the sub-run of $\rho_{y z}$ after r_{y} is that same as the sub-run of $\rho_{x z}$ after r_{x} - so the sub-run of $\rho_{y z}$ after r_{y} also visits infinitely many times in q_{f} and since r_{y} is final, that means that $\rho_{y z}$ also visits infinitely many times in q_{f} and so we get that $y z \in \llbracket \mathcal{D} \rrbracket=L$, contradicting that $y z \notin L$
Let us now return to the original proof: let us assume towards contradiction that the number of equivalence classes in \equiv_{L} is infinite. That means that there exist infinitely many words $w_{1}, w_{2}, \ldots \in \Sigma^{*}$ such that $\forall i \neq j: w_{i} \not \equiv w_{j}$. From the lemma we get that since $\forall i \neq j: w_{i} \not \equiv w_{j}-\forall i \neq j: q_{i} \not \equiv q_{j}$. That means that we get infinitely many different states, contradicting that the number of states in \mathcal{D} is final.

6.3 Section iii

In this section we are to prove or refute the following claim: If L is accepted by a DBA then the number of states in a minimal DBA is equivalent to the number of equivalence classes in \equiv_{L}.
Claim: The claim is incorrect To prove so, we'll provide a counterexample. Let $\mathcal{D}=\left(\Sigma, Q, q_{0}, \delta, F\right)$ be a DBA such that:

$$
\begin{gathered}
Q=\left\{q_{1}, q_{2}\right\} \\
q_{0}=q_{1} \\
\delta\left(q_{1}, b\right)=q_{1} ; \delta\left(q_{1}, a\right)=q_{2} \\
\delta\left(q_{2}, b\right)=q_{1} ; \delta\left(q_{2}, a\right)=q_{2} \\
F=\left\{q_{2}\right\}
\end{gathered}
$$

Let us draw \mathcal{D} :

Let $L=\Sigma^{*} a^{\omega}$. One can see that $\llbracket \mathcal{D} \rrbracket=L$, as in the language \mathcal{D} accepts is the language of all words that have infinite a 's in them. Since the condition of infinite a ' must be checked with an accepting state, there has to be an additional state for words that does not have infinite a^{\prime} in them. So the minimal number of states to accept L is 2 - the same number as in \mathcal{D} and so it is a minimal DBA for L. Since \mathcal{D} only accepts words with infinite a 's, it has only one equivalence class, which is less that the number of states in a minimal DBA that accepts it. So the claim is incorrect.

