Automata and Logic on Infinite Objects 1

Shay Kricheli

November 2019

1 Question 1

Let r be an ω -regular expression and let Σ be an alphabet such that $r \in \Sigma \cup \{\emptyset, \cdot, \omega, +\}$. We'll show that there exists an NBW \mathcal{B}_r such that $[\mathcal{B}_r] = [r]$.

<u>Reminder</u>: Let us recall that an NBW is a tuple $\mathcal{B}_r = (\Sigma, Q, Q_0, \Delta, F)$. For a run $\rho = q_0 q_1 q_2 \dots$ let us define $inf(\rho) = \{q \in Q \mid \forall i \in \mathbb{N} j > iq_j = q\}$ - the set of states visited infinitely often during the run ρ . The Büchi acceptance condition is the set $F \subseteq Q$ and a run ρ of a Büchi automaton is accepting if it visits F infinitely often, as in if $inf(\rho) \cap F \neq \emptyset$.

We'll use complete structural induction on |r| - the length of r.

• <u>Base case</u>: Since r is a ω -regular expression, |r| > 0. Therefore, the base case will be for |r| = 1. In that case, by the definition of ω -regular expressions, it must be that $r = \emptyset$. In that case, by definition, $[\![r]\!] = [\![\emptyset]\!] = \emptyset$. Let \mathcal{B}_r be an NBW with one non-accepting state. Formally: $\mathcal{B}_r = (\Sigma, Q, Q_0, \Delta, F)$ such that:

$$Q = \{q\}$$

$$Q_0 = \{q\}$$

$$\forall \sigma \in \Sigma \; ; \; \Delta(\sigma, q) = \{q\}$$

$$F_r = \emptyset$$

According to the Büchi acceptance condition - for any run ρ it will hold that: $inf(\rho) \cap F = inf(\rho) \cap \emptyset = \emptyset$ and therefore $[\mathcal{B}_r] = \emptyset = [r]$.

- Induction assumption: Let r be a ω -regular expression such that 1 < |r| < n. So there exists an $\overline{\text{NBW }\mathcal{B}_r}$ such that $[\![\overline{\mathcal{B}}_r]\!] = [\![r]\!]$.
- Induction step: Let r be a ω -regular expression such that |r| = n > 1. Since |r| > 1, there exists two ω -regular expression r_1, r_2 such that one of the following holds:
 - 1. $r = r_1 + r_2$ where r_1 and r_2 are ω -regular expressions.
 - 2. $r = r_1 \cdot r_2$ where r_1 is a regular expression and r_2 is an ω -regular expressions.
 - 3. $r = r_1^{\omega}$ where r_1 is a regular expression.

In all these cases, it holds that $|r_1| < n$ and $|r_2| < n$ and so the induction assumption holds for r_1 and r_2 . Let us denote $[\![r_1]\!] = L_1$ and $[\![r_1]\!] = L_2$. Let us now split into the 3 aforementioned cases:

1. $r = r_1 + r_2$:

From the induction assumption we'll get that there exist two NBWs $\mathcal{B}_{r_1} = (\Sigma, Q_{r_1}, Q_{0_{r_1}}, \Delta_{r_1}, F_{r_1})$ and $\mathcal{B}_{r_2} == (\Sigma, Q_{r_2}, Q_{0_{r_2}}, \Delta_{r_2}, F_{r_2})$ such that $[\mathcal{B}_{r_1}] = [r_1] = L_1$ and $[\mathcal{B}_{r_2}] = [r_2] = L_2$. Applying the semantics function on both sides of the equation yields:

$$\llbracket r \rrbracket = \llbracket r_1 + r_2 \rrbracket = \llbracket r_1 \rrbracket \cup \llbracket r_2 \rrbracket = \llbracket \mathcal{B}_{r_1} \rrbracket \cup \llbracket \mathcal{B}_{r_2} \rrbracket = L_1 \cup L_2$$

We spoke in class of a construction for an NBW that accepts a union of two NBWs so we will provide a short correctness argument: let $\mathcal{B}_r = (\Sigma, Q_r, Q_{0_r}, \Delta_r, F_r)$ be a NBA such that:

$$Q_r = Q_{r_1} \cup Q_{r_2}$$
$$Q_{0_r} = Q_{0_{r_1}} \cup Q_{0_{r_2}}$$
$$\Delta_r = \Delta_{r_1} \cup \Delta_{r_2}$$
$$F_r = F_{r_1} \cup F_{r_2}$$

 \mathcal{B}_r starts with all the accepting states of \mathcal{B}_{r_1} and \mathcal{B}_{r_2} , transitions and accepts according to them - so it accepts the language that is the union $L_1 \cup L_2$. So it will hold that:

$$\llbracket \mathcal{B}_r \rrbracket = L_1 \cup L_2 = \llbracket r \rrbracket$$

2. $r = r_1 \cdot r_2$:

From the induction assumption we'll get that: since r_1 is a regular expression, there exists an NFW $\mathcal{N}_{r_1} = (\Sigma, Q_{r_1}, Q_{0_{r_1}}, \Delta_{r_1}, F_{r_1})$ such that $[\![\mathcal{N}_{r_1}]\!] = [\![r_1]\!] = L_1$ and since r_2 is an ω -regular expression, there exists an NBW $\mathcal{B}_{r_2} = (\Sigma, Q_{r_2}, Q_{0_{r_2}}, \Delta_{r_2}, F_{r_2})$ such that $[\![\mathcal{B}_{r_2}]\!] = [\![r_2]\!] = L_2$. Applying the semantics function on both sides of the equation yields:

$$\llbracket r \rrbracket = \llbracket r_1 \cdot r_2 \rrbracket = \llbracket r_1 \rrbracket \cdot \llbracket r_2 \rrbracket = \llbracket \mathcal{N}_{r_1} \rrbracket \cdot \llbracket \mathcal{B}_{r_2} \rrbracket = L_1 \cdot L_2$$

We will provide a construction for an NBW that accepts the language $L_1 \cdot L_2$ using \mathcal{N}_{r_1} and \mathcal{B}_{r_2} .

Let $\mathcal{B}_r = (\Sigma, Q_r, Q_{0_r}, \Delta_r, F_r)$ where:

$$\begin{aligned} Q_{r} &= Q_{r_{1}} \cup Q_{r_{2}} \\ Q_{0_{r}} &= Q_{0_{r_{1}}} \\ \Delta_{r} &= \Delta_{r_{1}} \cup \Delta_{r_{2}} \cup \{(q, \varepsilon, Q_{0_{r_{2}}}) \mid q \in F_{r_{1}}\} \\ F_{r} &= F_{r_{2}} \end{aligned}$$

Claim: $\llbracket \mathcal{B}_r \rrbracket = L_1 \cdot L_2$ We'll prove this by showing two-directional containment: $\llbracket \mathcal{B}_r \rrbracket \subseteq L_1 \cdot L_2$: Let $w \in \llbracket \mathcal{B}_r \rrbracket$. Since w got accepted by \mathcal{B}_r , that means that for some run ρ : $inf(\rho) \cap F_r \neq \emptyset$. That means that the run visited infinitely many times in some $q_2 \in F_r = F_{r_2} \subseteq Q_{r_2}$ (*). By the definition of $\Delta_r - \rho$ moved to q_2 only by visiting first some $q_1 \in F_{r_1}$. Since q_1 is an accepting state of \mathcal{N}_{r_1} - that means that there exists a prefix of $\omega - u \in \Sigma^*$ such that $u \in \llbracket \mathcal{N}_{r_1} \rrbracket = L_1$. From (*) we'll get that there exists a suffix of $\omega - v \in \Sigma^{\omega}$ such that $v \in \llbracket \mathcal{B}_{r_2} \rrbracket = L_2$. Therefore $w = u \cdot v \in L_1$.

 $\underbrace{L_1 \cdot L_2 \subseteq \llbracket \mathcal{B}_r \rrbracket : \text{Let } w \in L_1 \cdot L_2. \text{ That means there exists a prefix of } \omega - u \in L_1 = \llbracket \mathcal{N}_{r_1} \rrbracket }_{\text{and a suffix of } \omega - v \in L_2 = \llbracket \mathcal{B}_{r_2} \rrbracket \text{ such that } w = u \cdot v. \text{ Since } u \in \llbracket \mathcal{N}_{r_1} \rrbracket, \text{ there exists a run } \rho_1 = q_1 q_2 \dots q_n \text{ of } \mathcal{N}_{r_1} \text{ on } u \text{ such that } q_n \in F_{r_1}. \text{ Since } v \in \llbracket \mathcal{B}_{r_2} \rrbracket, \text{ there exists a run } \rho_2 = q'_1 q'_2 \dots \text{ of } \mathcal{B}_{r_2} \text{ on } v \text{ such that } inf(\rho_2) \cap F_r \neq \emptyset \text{ and therefore there exists a state } q_k \in F_r = F_{r_2} \text{ that is visited infinitely many times in } \rho_2. \text{ From these two facts and the construction of } \mathcal{B}_r \text{ as non-deterministic - there exists a run } \rho_3 \text{ of } \mathcal{B}_r \text{ on } w \text{ that visits } q_n \text{ and visits } q_k \text{ infinitely many times - and therefore accepts } w. \text{ So } w \in \llbracket \mathcal{B}_r \rrbracket.$

3. $r = r_1^{\omega}$:

From the induction assumption we'll get that: since r_1 is a regular expression, there exists an NFW $\mathcal{N}_{r_1} = (\Sigma, Q_{r_1}, Q_{0_{r_1}}, \Delta_{r_1}, F_{r_1})$ such that $[\![\mathcal{N}_{r_1}]\!] = [\![r_1]\!] = L_1$. Applying the semantics function on both sides of the equation yields:

$$\llbracket r \rrbracket = \llbracket r_1^{\omega} \rrbracket = \llbracket r \rrbracket^{\omega} = L_1^{\omega}$$

We will provide a construction for an NBW that accepts the language L_1^{ω} using \mathcal{N}_{r_1} . Let $\mathcal{B}_r = (\Sigma, Q_r, Q_{0_r}, \Delta_r, F_r)$ where:

$$Q_{r} = Q_{r_{1}} \cup \{q^{*}\}$$
$$Q_{0_{r}} = Q_{0_{r_{1}}}$$
$$\Delta_{r} = \Delta_{r_{1}} \cup \{(q_{f}, \varepsilon, \{q^{*}\}), ((q^{*}, \varepsilon), Q_{0_{r_{1}}}) \mid q_{f} \in F_{r_{1}}\}$$
$$F_{r} = \{q^{*}\}$$

Claim: $\llbracket \mathcal{B}_r \rrbracket = L_1^{\omega}$. We'll prove this by showing two-directional containment: $\llbracket \mathcal{B}_r \rrbracket \subseteq L_1^{\omega} :$ Let $w \in \llbracket \mathcal{B}_r \rrbracket$. Since w got accepted by \mathcal{B}_r , that means that for some run $\rho: inf(\rho) \cap F_{r_1} \neq \emptyset$. That means that the run visited infinitely many times in the only accepting state - q^* . By the construction of \mathcal{B}_r - that means that the run visited infinitely many times in states that are accepting in \mathcal{N}_{r_1} . That means that w is a word composed of infinitely many words from L_1 - and therefore $w \in L_1^{\omega}$. $L^{\omega} \subseteq \llbracket \mathcal{B}_1 \rrbracket$. Let $w \in L^{\omega}$. That means that w is normalized of infinitely many times for L_1 .

 $L_1^{\omega} \subseteq \llbracket \mathcal{B}_r \rrbracket$: Let $w \in L_1^{\omega}$. That means that w is composed of infinitely many words from $\overline{L_1}$. From the construction of \mathcal{B}_r , that means that there exists a run ρ that visited infinitely many times in states that are accepting in \mathcal{N}_{r_1} and then visits the accepting state in \mathcal{B}_r - q^* . Since ρ visits the accepting state q^* infinitely many times - $inf(\rho) \cap F_{r_1} \neq \emptyset$ and so $w \in \llbracket \mathcal{B}_r \rrbracket$.

2 Question 2

We will provide a counterexample: Let $\Sigma = \{a, b\}$ and let us consider the following ω -regular language:

 $L = \{ w \in \Sigma^{\omega} \mid \text{the number of } a \text{'s in } w \text{ is either even or infinite} \}$

This language is ω -regular as one can see that for $r = (b^*ab^*a)^*b^\omega \cup \Sigma^*(\Sigma^*a\Sigma^*)^\omega$:

$$[\![r]\!] = [\![(b^*ab^*a)^*b^\omega \cup \Sigma^*(\Sigma^*a\Sigma^*)^\omega]\!] = L$$

Let us construct a DBW that accepts L in the following manner: $\mathcal{B} = (\Sigma, Q, q_0, \delta, F)$ where:

$$Q = \{q_1, q_2, q_3\}$$

$$q_0 = q_1$$

$$\delta(q_1, b) = q_1 ; \ \delta(q_1, a) = q_2 ; \ \delta(q_2, b) = q_2$$

$$\delta(q_2, a) = q_3; \ ; \delta(q_3, b) = q_3 ; \ \delta(q_3, a) = q_2$$

$$F = \{q_1, q_3\}$$

Let us draw \mathcal{B} :

Now, let $u = \epsilon$ and v = a. So uv = a and |v| = 1. One can see that \mathcal{B} is a minimal DBW L but any run on $uv^{\omega} = a^{\omega}$ induces a sequence of states with a cycle of length 2 > 1 = |v|.

3 Question 3

The claim is correct. To prove so, we'll show first that $\mathbb{DBGW} = \mathbb{DBW}$. It is trivial that $\mathbb{NBW} \subseteq \mathbb{NBGW}$ (as an \mathbb{NBW} is a specific case of a \mathbb{NBGW} that has one set of accepting states). We showed in class that $\mathbb{DBW} \subseteq \mathbb{NBW}$, so we'll get: $\mathbb{DBGW} = \mathbb{DBW} \subseteq \mathbb{NBW} = \mathbb{NBGW}$ that corresponds to $\mathbb{DBGW} \subseteq \mathbb{NBGW}$.

<u>Lemma:</u> $\mathbb{DBGW} = \mathbb{DBW}$: We'll prove this by showing two-directional containment:

 $\underline{\mathbb{DBW} \subseteq \mathbb{DBGW}}$: This side is trivial as a DBW is a specific case of a DBGW that has one set of accepting states.

 $\frac{\mathbb{D}\mathbb{B}\mathbb{G}\mathbb{W}\subseteq\mathbb{D}\mathbb{B}\mathbb{W}}{\text{Let }\mathcal{G}=(\Sigma,Q,q_0,\delta,\{F_1,...,F_n\}) \text{ be a DBGW. Let }\mathcal{B}=(\Sigma,Q_b,q_{0_b},\delta_b,F_b) \text{ such that:}}$

$$Q_b = Q \times \{1, ..., n\}$$

$$q_{0_b} = (q_0, 1)$$

$$\delta_b = \{((q, i), \sigma, (q', j)) \mid (q, \sigma, q') \in \delta, \text{ if } q \in F_i : j = ((i + 1) \mod n) \text{ else } j = i\}$$

$$F_b = F_1 \times \{1\}$$

Claim: $\llbracket \mathcal{G} \rrbracket = \llbracket \mathcal{B} \rrbracket$ We'll prove this by showing two-directional containment: $\llbracket \mathcal{G} \rrbracket \subseteq \llbracket \mathcal{B} \rrbracket$: Let $w \in \llbracket \mathcal{G} \rrbracket$. Since w got accepted by \mathcal{G} - by the generalized Büchi automaton acceptance condition that means that there exists a run ρ_G of \mathcal{G} on w such that:

$$\begin{aligned} &\forall i \in \{1, ..., n\} \ ; \ \inf(\rho_G) \cap F_i \neq \emptyset \\ &\rightarrow \forall i \in \{1, ..., n\} \ ; \ \exists q_i \in Q \ : \ q_i \in \inf(\rho_G) \cap F_i \\ &\rightarrow \forall i \in \{1, ..., n\} \ ; \ \exists q_i \in Q \ : \ q_i \in \inf(\rho_G) \land q_i \in F_i \end{aligned}$$

That means that there exist in ρ_G infinitely many configurations of the form:

$$(q_i, \sigma_i u_i) \stackrel{\sigma_i}{\Rightarrow} (q_{j_i}, u_i)$$

for all $i \in \{1, ..., n\}$ when u_i is a suffix of w and $\sigma_i \in \Sigma$, such that $q_i \in F_i$. By that fact and the construction of \mathcal{B} , that means that there exist a run ρ_B with infinitely many configurations of the form:

$$((q_i, i), \sigma_i u_i) \stackrel{\sigma_i}{\Longrightarrow} ((q_{k_i}, ((i+1) \mod n), u_i))$$

for all $i \in \{1, ..., n\}$. That means that specifically, for i = 1 there are infinitely many configurations in ρ_B of the form:

$$((q_1,1),\sigma_1u_1) \stackrel{\sigma_1}{\Longrightarrow} ((q_{k_1},(2 \mod n),u_1))$$

such that $q_1 \in F_1$. That means that $(q_1, 1) \in inf(\rho_B)$. Since $q_1 \in F_1$ - we have that $(q_1, 1) \in F_1 \times \{1\} = F_b$ and thus $inf(\rho_B) \cap F_b \neq \emptyset$. Therefore - $w \in [\![\mathcal{B}]\!]$.

 $[\underline{\mathcal{B}}] \subseteq [\underline{\mathcal{G}}]: Let \ w \in [\underline{\mathcal{B}}]. Since \ w \text{ got accepted by } \mathcal{B} - that means that there exists a run \ \rho_B \text{ of } \mathcal{B} \text{ on } w \text{ such that:}$

$$inf(\rho_B) \cap F_b = inf(\rho_B) \cap F_1 \times \{1\} \neq \emptyset$$

$$\rightarrow \exists (q_1, 1) \in Q_b : (q_1, 1) \in inf(\rho_B) \cap F_1 \times \{1\}$$

$$\rightarrow \exists (q_1, 1) \in Q_b : (q_1, 1) \in inf(\rho_B) \land (q_1, 1) \in F_1 \times \{1\}$$

when $q_1 \in F_1$. That means that ρ_B visits infinitely many times in $(q_1, 1)$. By the construction of \mathcal{B} - that means that there are infinitely many configurations in ρ_B of the form:

$$((q_1, 1), \sigma_1 \sigma_2 \dots \sigma_n u) \stackrel{\sigma_1}{\Longrightarrow} ((q_{j_1}, ((1+1) \ mod \ n), \sigma_2 \dots \sigma_n u) = ((q_{j_1}, (2 \ mod \ n), \sigma_2 \dots \sigma_n u) = ((q_{j_1}, 2, \sigma_2 \dots \sigma_n u)) = ((q_{j_1}, 2, \sigma_2 \dots \sigma_n u))$$

assuming without loss of generality that n > 2, when u is a suffix of w and for all $i \in \{1, ..., n\}$; $\sigma_i \in \Sigma$, such that $q_1 \in F_1$. By the construction of \mathcal{B} - since ρ_B visits infinitely many times in $(q_1, 1)$, there must be a configurations in ρ_B of the form:

$$((q_{j_1}, 2, \sigma_2 \dots \sigma_n u) \stackrel{*}{\Rightarrow} ((q_1, 1), u')$$

where u' is a suffix of u. Once again by the construction of \mathcal{B} - that means that for all $i \in \{1, ..., n\}$ - ρ_B visits infinitely many times in (q_i, i) and by the definition of δ_b we get that there for all $i \in \{1, ..., n\}$ there exist $q_i \in F_i$. Therefore, once again by the definition of δ_b - there exists a run ρ_G with infinitely many configurations of the form:

$$(q_i, \sigma_i u_i) \stackrel{\sigma_i}{\Longrightarrow} (q_{k_i}, u_i)$$

for all $i \in \{1, ..., n\}$ when u_i is a suffix of w and $\sigma_i \in \Sigma$, such that $q_i \in F_i$. That means that $\forall i \in \{1, ..., n\}$; $inf(\rho_G) \cap F_i \neq \emptyset$ and by the generalized Büchi automaton acceptance condition that means that $w \in [\mathcal{B}]$.

4 Question 4

Let $\Sigma_n = \{0, 1, ..., n-1\}$ and let \oplus_n denote addition modulo n. Let:

 $L_n = \left\{ w \in \Sigma_n^{\omega} \mid \exists k \in \Sigma_n : \text{ the letter } k \text{ appears finitely often in } w \right\}$ and the letter $k \oplus_n 1$ appears infinitely often in $w \right\}$

We will provide a an ω -automaton \mathcal{A} such that $\llbracket \mathcal{A} \rrbracket = L_n$ that has O(n) states. We will choose the NRW - nondeterministic Rabin automaton $\mathcal{A} = (\Sigma_n, Q, Q_0, \Delta, R)$ where:

$$Q = \Sigma_n = \{0, 1, ..., n - 1\}$$
$$Q_0 = Q$$
$$\Delta = \{(i, \sigma, \sigma) \mid i \in Q = \Sigma_n, \sigma \in \Sigma_n\}$$
$$R = \{(\{k \oplus_n 1\}, \{k\}) \mid k \in Q\}$$

One can see that |Q| = O(n).

Correctness argument: The states of the automaton are all the letters in Σ_n - the numbers from 0 to n-1. Given a word $w \in \Sigma_n^{\omega}$, a run ρ of \mathcal{A} on w will pass through the states corresponding to the letters in the word - as defined by the transition function Δ . By the definition of the Rabin acceptance condition, given $R' = \{(G_i, B_i) \mid \forall \ 1 \leq i \leq k : G_i, B_i \subseteq Q\}$, - a run ρ' is accepting iff:

$$\exists i : inf(\rho') \cap G_i \neq \emptyset \land inf(\rho') \cap B_i = \emptyset$$

By that and the definition of R - ρ is accepting iff:

$$\exists k : inf(\rho') \cap \{k \oplus_n 1\} \neq \emptyset \land inf(\rho') \cap \{k\} = \emptyset$$

That means that ρ is accepting iff it passes infinitely many times in $k \oplus_n 1$ and finitely many times in k, and that corresponds exactly to the condition for w to be in L_n .

5 Question 5

Let R_1 and R_2 be finitary properties, as in $R_1, R_2 \subseteq \Sigma^*$.

5.1 Section a

In this section we are to show that recurrence properties are closed under union. Let us recall that a recurrence property of a finitary set V is an infinitary property W that contains all the infinite words

that have infinite prefixes in V, as in $W = \mathcal{R}_{Pref}(V) = \{w \in \Sigma^{\omega} \mid \forall i \exists j > i : w[...j] \in V\}$. So let us assume that there exist two recurrence properties P_1 and P_2 such that:

$$P_1 = \mathcal{R}_{Pref}(R_1)$$
$$P_2 = \mathcal{R}_{Pref}(R_2)$$

We are to show that $P_1 \cup P_2$ is also a recurrence property. Claim: $P_1 \cup P_2 = \mathcal{R}_{Pref}(R_1 \cup R_2)$ We'll prove so by simultaneous two-directional containment. Let $w \in \Sigma^{\omega}$.

$$\begin{split} w \in P_1 \cup P_2 \Leftrightarrow w \in \mathcal{R}_{Pref}(R_1) \cup \mathcal{R}_{Pref}(R_2) \Leftrightarrow w \in \mathcal{R}_{Pref}(R_1) \lor w \in \mathcal{R}_{Pref}(R_2) \\ \Leftrightarrow w \in \{w' \in \Sigma^{\omega} \mid \forall i \exists j_1 > i : w'[...j_1] \in R_1\} \lor w \in \{w' \in \Sigma^{\omega} \mid \forall i \exists j_2 > i : w'[...j_2] \in R_2\} \\ \Leftrightarrow \forall i \exists j_1 : j_1 > i : w[...j_1] \in R_1 \lor \forall i \exists j_2 > i : w[...j_2] \in R_2 \Leftrightarrow \forall i \exists j = \max\{j_1, j_2\} > i : w[...j] \in R_1 \cup R_2 \\ \Leftrightarrow w \in \{w' \in \Sigma^{\omega} \mid \forall i \exists j > i : w'[...j] \in R_1 \cup R_2\} \Leftrightarrow w \in \mathcal{R}_{Pref}(R_1 \cup R_2) \blacksquare$$

5.2 Section b

In this section we are to show that $\mathcal{R}_{Pref}(R_1) \cap \mathcal{R}_{Pref}(R_2) \neq \mathcal{R}_{Pref}(R_1 \cap R_2)$. To do so, we'll provide a counterexample. Let us consider $\Sigma = \{a\}$ and:

$$R_1 = \{a^i \mid i \text{ is prime }\}$$
$$R_2 = \{a^i \mid i \text{ is not prime }\}$$

Of course, $R_1 \cap R_2 = \emptyset$ so by definition $\mathcal{R}_{Pref}(R_1 \cap R_2) = \mathcal{R}_{Pref}(\emptyset) = \emptyset$. Claim: $a^{\omega} \in \mathcal{R}_{Pref}(R_1) \cap \mathcal{R}_{Pref}(R_2)$ Since there are infinitely many prime numbers:

 $\forall i \in \mathbb{N} : \exists j > i : j \text{ is prime } \rightarrow \forall i \exists j > i : a^{\omega}[...j] = a^j \in R_1 \rightarrow a^{\omega} \in \mathcal{R}_{Pref}(R_1)$

And since there are infinitely many non-prime numbers:

 $\forall i \in \mathbb{N} : \exists j > i : j \text{ is not prime } \rightarrow \forall i \exists j > i : a^{\omega}[\dots j] = a^j \in R_2 \rightarrow a^{\omega} \in \mathcal{R}_{Pref}(R_2)$

So $a^{\omega} \in \mathcal{R}_{Pref}(R_1) \cap \mathcal{R}_{Pref}(R_2) \blacksquare$. Finally, we get $\mathcal{R}_{Pref}(R_1 \cap R_2) \neq \mathcal{R}_{Pref}(R_1) \cap \mathcal{R}_{Pref}(R_2)$.

5.3 Section c

Let:

$$minex(R_1, R_2) = \left\{ u_2 \in R_2 \ \middle| \ \exists u_1 \in R_1 \ : \ u_1 \prec u_2 \land \nexists u_2' \in R_2 \ : \ u_1 \prec u_2' \prec u_2 \right\}$$

Let us observe that $minex(R_1, R_2)$ is the language of all the words from R_2 that have a proper prefix u_1 in R_1 and are minimal in that property, in a sense that for all $u_2 \in minex(R_1, R_2)$ there aren't any other words from R_2 that have the same proper prefix u_1 and are a proper prefix of u_2 . Claim: $\mathcal{R}_{Pref}(R_1) \cap \mathcal{R}_{Pref}(R_2) = \mathcal{R}_{Pref}(minex(R_1, R_2))$ We'll prove so by two-directional containment.

$$\mathcal{R}_{Pref}(R_1) \cap \mathcal{R}_{Pref}(R_2) \subseteq \mathcal{R}_{Pref}(minex(R_1, R_2))$$
: Let $w \in \mathcal{R}_{Pref}(R_1) \cap \mathcal{R}_{Pref}(R_2)$. Then:

$$w \in \mathcal{R}_{Pref}(R_1) \land w \in \mathcal{R}_{Pref}(R_2)$$
$$\implies w \in \{w' \in \Sigma^{\omega} \mid \forall i \exists j_1 > i : w'[...j_1] \in R_1\} \land w \in \{w' \in \Sigma^{\omega} \mid \forall i \exists j_2 > i : w'[...j_2] \in R_2\}$$
$$\implies \forall i \exists j_1 > i : w[...j_1] \in R_1 \land \forall i \exists j_2 > i : w[...j_2] \in R_2$$

Since for all $i \in \mathbb{N}$, there exists some index $j_1 \in \mathbb{N}$ such that $w[...j_1] \in R_1$ and some index $j_2 \in \mathbb{N}$ such that $w[...j_2] \in R_2$, $minex(R_1, R_2)$ will depend on the relation between j_1 and j_2 . Let $i \in \mathbb{N}$. Let us split into two cases:

- 1. If the corresponding indices j_1, j_2 hold that there isn't any $j_3 \in \mathbb{N}$ such that: $j_1 < j_3 < j_2$ and $w[...j_1] \prec w[...j_3] \prec w[...j_2]$ then by the definition of minex we'll have that $w[...j_2] \in minex(R_1, R_2)$. This holds for all $i \in \mathbb{N}$, so we'll have by the definition of \mathcal{R}_{Pref} that $w \in \mathcal{R}_{Pref}(minex(R_1, R_2))$.
- 2. If there exists $j_3 \in \mathbb{N}$ such that: $j_1 < j_3 < j_2$ and $w[...j_1] \prec w[...j_3] \prec w[...j_2]$ then let j_3^* be the minimal index that holds for that condition. Then by the definition of minex we'll have that $w[...j_3^*] \in minex(R_1, R_2)$. This once again holds for all $i \in \mathbb{N}$, then we'll have by the definition of \mathcal{R}_{Pref} that $w \in \mathcal{R}_{Pref}(minex(R_1, R_2))$.

 $\mathcal{R}_{Pref}(minex(R_1, R_2)) \subseteq \mathcal{R}_{Pref}(R_1) \cap \mathcal{R}_{Pref}(R_2)$: Let $w \in \mathcal{R}_{Pref}(minex(R_1, R_2))$. Then:

$$\begin{split} w \in \mathcal{R}_{Pref}(minex(R_1, R_2)) \\ \Longrightarrow w \in \{w' \in \Sigma^{\omega} \mid \forall i \exists j > i : w'[...j] \in minex(R_1, R_2)\} \\ \Longrightarrow \forall i \exists j > i : w[...j] \in minex(R_1, R_2) \\ \Longrightarrow \forall i \exists j > i : w[...j] \in R_2 : \exists u_1 \in R_1 : u_1 \prec w[...j] \land \nexists u'_2 \in R_2 : u_1 \prec u'_2 \prec w[...j] \\ \Longrightarrow \forall i \exists j > i : w[...j] \in R_2 : \exists k < j : w[...k] \in R_1 : w[...k] \prec w[...j] \land \nexists u'_2 \in R_2 : w[...k] \prec u'_2 \prec w[...j] \end{split}$$

Let $i \in \mathbb{N}$. The corresponding indices j, k hold that j > i and j > k. Let us split into two cases:

1. If $k \ge i$ then we have:

$$w[...j] \in R_2 \land w[...k] \in R_1 : w[...k] \prec w[...j] \land \nexists u'_2 \in R_2 : w[...k] \prec u'_2 \prec w[...j]$$

$$\implies w \in \{w' \in \Sigma^{\omega} \mid \forall i \exists j_1 > i : w'[...j_1] \in R_1\} \land w \in \{w' \in \Sigma^{\omega} \mid \forall i \exists j_2 > i : w'[...j_2] \in R_2\}$$

$$\implies w \in \mathcal{R}_{Pref}(R_1) \land w \in \mathcal{R}_{Pref}(R_2)$$

$$\implies w \in \mathcal{R}_{Pref}(R_1) \cap \mathcal{R}_{Pref}(R_2)$$

2. If k < i then let us observe that there exists j' > j such that:

$$\exists w[...j'] \in minex(R_1, R_2) \\ \Longrightarrow \exists m < j' : w[...m] \in R_1 : w[...m] \prec w[...j'] \land \nexists u'_2 \in R_2 : w[...m] \prec u'_2 \prec w[...j']$$

Let us assume towards contradiction that m < i. Then we'll get that:

$$\exists w[\dots i] \in R_2 : w[\dots m] \prec w[\dots i] \prec w[\dots j']$$

thus contradicting the former reasoning. Therefore we have that there exists $m \in \mathbb{N}$ such that $m \geq i$ and:

$$w[...j] \in R_2 \land w[...m] \in R_1 : w[...m] \prec w[...j] \land \nexists u'_2 \in R_2 : w[...m] \prec u'_2 \prec w[...j]$$

$$\implies w \in \{w' \in \Sigma^{\omega} \mid \forall i \exists j_1 > i : w'[...j_1] \in R_1\} \land w \in \{w' \in \Sigma^{\omega} \mid \forall i \exists j_2 > i : w'[...j_2] \in R_2\}$$

$$\implies w \in \mathcal{R}_{Pref}(R_1) \land w \in \mathcal{R}_{Pref}(R_2)$$

$$\implies w \in \mathcal{R}_{Pref}(R_1) \cap \mathcal{R}_{Pref}(R_2) \blacksquare$$

5.4 Section d

In this section we are to show that recurrence properties are closed under intersection. In the last section we proved that given two finitary properties R_1 and R_2 - the intersection of their corresponding recurrence properties $P_1 = \mathcal{R}_{Pref}(R_1)$ and $P_2 = \mathcal{R}_{Pref}(R_2)$, as in $\mathcal{R}_{Pref}(R_1) \cap \mathcal{R}_{Pref}(R_2)$ is a recurrence relation of the finitary property $minex(R_1, R_2)$, and so using this construction - the recurrence property is closed under intersection.

5.5 Section e

In this section we are to show that persistence properties are closed under union and intersection. Let R_1 and R_2 be finitary properties, as in $R_1, R_2 \subseteq \Sigma^*$. From the duality properties of the linguistic characterizations we saw in class, we know that for a finitary property R:

(*)
$$\mathcal{R}_{Pref}(R) = \mathcal{P}_{Pref}(\overline{R})$$

<u>Closure under union</u>: Let us consider the $\mathcal{P}_{Pref}(R_1) \cup \mathcal{P}_{Pref}(R_2)$. From (*):

$$\mathcal{P}_{Pref}(R_1) \cup \mathcal{P}_{Pref}(R_2) = \overline{\mathcal{R}_{Pref}(\overline{R_1})} \cup \overline{\mathcal{R}_{Pref}(\overline{R_2})}$$

From De Morgan's laws:

$$\overline{\mathcal{R}_{Pref}(\overline{R_1})} \cup \overline{\mathcal{R}_{Pref}(\overline{R_2})} = \overline{\mathcal{R}_{Pref}(\overline{R_1})} \cap \mathcal{R}_{Pref}(\overline{R_2})$$

From the construction shown in the previous sections for an intersection of two recurrence properties:

$$\mathcal{R}_{Pref}(\overline{R_1}) \cap \mathcal{R}_{Pref}(\overline{R_2}) = \mathcal{R}_{Pref}(minex(\overline{R_1}, \overline{R_2}))$$
$$\implies \overline{\mathcal{R}_{Pref}(\overline{R_1}) \cap \mathcal{R}_{Pref}(\overline{R_2})} = \overline{\mathcal{R}_{Pref}(minex(\overline{R_1}, \overline{R_2}))}$$

From (*) again:

$$\overline{\mathcal{R}_{Pref}(minex(\overline{R_1}, \overline{R_2}))} = \mathcal{P}_{Pref}(\overline{minex(\overline{R_1}, \overline{R_2})})$$

So finally:

$$\mathcal{P}_{Pref}(R_1) \cup \mathcal{P}_{Pref}(R_2) = \mathcal{P}_{Pref}(minex(\overline{R_1}, \overline{R_2}))$$

So we saw a construction for a closure to a union of two persistence properties. <u>Closure under intersection</u>: Let us consider the $\mathcal{P}_{Pref}(R_1) \cap \mathcal{P}_{Pref}(R_2)$. From (*):

$$\mathcal{P}_{Pref}(R_1) \cap \mathcal{P}_{Pref}(R_2) = \mathcal{R}_{Pref}(\overline{R_1}) \cap \mathcal{R}_{Pref}(\overline{R_2})$$

From De Morgan's laws:

$$\overline{\mathcal{R}_{Pref}(\overline{R_1})} \cap \overline{\mathcal{R}_{Pref}(\overline{R_2})} = \overline{\mathcal{R}_{Pref}(\overline{R_1}) \cup \mathcal{R}_{Pref}(\overline{R_2})}$$

From the construction shown in the previous sections for a union of two recurrence properties:

$$\mathcal{R}_{Pref}(\overline{R_1}) \cup \mathcal{R}_{Pref}(\overline{R_2}) = \mathcal{R}_{Pref}(\overline{R_1} \cup \overline{R_2})$$
$$\Longrightarrow \overline{\mathcal{R}_{Pref}(\overline{R_1}) \cup \mathcal{R}_{Pref}(\overline{R_2})} = \overline{\mathcal{R}_{Pref}(\overline{R_1} \cup \overline{R_2})}$$

From (*) and De Morgan's laws:

$$\overline{\mathcal{R}_{Pref}(\overline{R_1}\cup\overline{R_2})}=\mathcal{P}_{Pref}(\overline{\overline{R_1}\cup\overline{R_2}})=\mathcal{P}_{Pref}(R_1\cap R_2)$$

So finally we have:

$$\mathcal{P}_{Pref}(R_1) \cap \mathcal{P}_{Pref}(R_2) = \mathcal{P}_{Pref}(R_1 \cap R_2)$$

So we saw a construction for a closure to an intersection of two persistence properties.

6 Question 6

Let $L \subseteq \Sigma^{\omega}$ be an infinitary language. Let us consider the following definition of a finite words relation: For $x, y \in \Sigma^*$ we have that:

$$x \equiv_L y \Leftrightarrow \forall z \in \Sigma^{\omega} : xz \in L \Leftrightarrow yz \in L$$

6.1 Section i

In this section we are to prove that the relation \equiv_L is an equivalence relation. To do so, by definition, we'll need to show that \equiv_L is transitive, reflexive and symmetric.

<u>Transitivity</u>: Let $x, y, z \in \Sigma^*$ and let us assume that $x \equiv_L y$ and $y \equiv_L z$. We have to show that $x \equiv_L z$. Since $x \equiv_L y$, by definition we have that:

$$(*) \ \forall \psi \in \Sigma^{\omega} : \ x\psi \in L \Leftrightarrow y\psi \in L$$

Since $y \equiv_L z$, by definition we have that:

$$(**) \ \forall \psi \in \Sigma^{\omega} : \ y\psi \in L \Leftrightarrow z\psi \in L$$

Let $\psi \in \Sigma^{\omega}$ and let us assume that $x\psi \in L$. From (*) we'll get $y\psi \in L$. From (**) we'll get $z\psi \in L$. Now let us assume that $x\psi \notin L$. From (*) we'll get $y\psi \notin L$. From (**) we'll get $z\psi \notin L$. So we got $x\psi \in L \Leftrightarrow z\psi \in L$ and by definition $x \equiv_L z$.

Reflexivity: Let $x \in \Sigma^*$. We have to show that $x \equiv_L x$. It is obvious that:

$$\forall \psi \in \Sigma^{\omega} : x\psi \in L \Leftrightarrow x\psi \in L$$

so $x \equiv_L x$.

Symmetricity: Let $x, y \in \Sigma^*$ and let us assume that $x \equiv_L y$. We have to show that $y \equiv_L z$. Since $x \equiv_L y$, by definition we have that:

$$\forall \psi \in \Sigma^{\omega} : x\psi \in L \Leftrightarrow y\psi \in L$$

That of course means that:

$$\forall \psi \in \Sigma^{\omega} : y\psi \in L \Leftrightarrow x\psi \in L$$

so we have that $y \equiv_L x$.

6.2 Section ii

In this section we are to prove or refute the following claim: If L is accepted by a DBA then the number of equivalence classes in \equiv_L is finite.

<u>Claim: The claim is correct</u> To prove so, let $L \subseteq \Sigma^{\omega}$ and let us assume that L is accepted by a DBW $\mathcal{D} = (\Sigma, Q, q_0, \delta, F)$, as in $\llbracket \mathcal{D} \rrbracket = L$. Let us denote for any finite word $w \in \Sigma^* : r_w$ to be the only run of \mathcal{D} on w (due to \mathcal{D} being deterministic) and q_w to be the final state in that run (which exists because w is final and \mathcal{D} is deterministic), as in $r_w = q_0 q_1 \dots q_w$. Moreover, let us denote for any infinite word $w \in \Sigma^{\omega} : \rho_w$ to be the only run of \mathcal{D} on w and let us call a *sub-run* a partial run of some run. Lemma: For all $x, y \in \Sigma^{\omega}$ if $x \neq_L y$ then $q_x \neq q_y$.

To prove so, we'll assume towards contradiction that $q_x = q_y$. Since $x \not\equiv_L y$ that means that (without loss of generality) there exists $z \in \Sigma^*$ such that $xz \in L$ and $yz \notin L$. Since we assumed that $[\mathcal{D}] = L$, that means that xz is accepted by \mathcal{D} while yz is not. Since we assumed that $q_x = q_y$, that means that the runs of \mathcal{D} on x and $y - r_x$ and r_y respectively are:

$$(q_0, xz) \stackrel{\sim}{\Rightarrow} (q_x, z)$$
$$(q_0, yz) \stackrel{*}{\Rightarrow} (q_y, z)$$

and since $q_x = q_y$:

$$(q_0, xz) \stackrel{*}{\Rightarrow} (q_x, z)$$
$$(q_0, yz) \stackrel{*}{\Rightarrow} (q_x, z)$$

Since $xz \in L$, then it holds that the $inf(\rho_{xz}) \cap F \neq \emptyset$. That means that there exists an accepting state $q_f \in F$ such that the run ρ_{xz} visits it infinitely many times. Since r_x is final, that means that the sub-run of ρ_{xz} after r_x also visits infinitely many times in q_f . Since $q_x = q_y$, the sub-run of ρ_{yz} after r_y is that same as the sub-run of ρ_{xz} after r_x - so the sub-run of ρ_{yz} after r_y also visits infinitely many times in q_f and since r_y is final, that means that ρ_{yz} also visits infinitely many times in q_f and since r_y is final, that means that ρ_{yz} also visits infinitely many times in q_f and so we get that $yz \in [D] = L$, contradicting that $yz \notin L \blacksquare$.

Let us now return to the original proof: let us assume towards contradiction that the number of equivalence classes in \equiv_L is infinite. That means that there exist infinitely many words $w_1, w_2, \ldots \in \Sigma^*$ such that $\forall i \neq j$: $w_i \not\equiv w_j$. From the lemma we get that since $\forall i \neq j$: $w_i \not\equiv w_j - \forall i \neq j$: $q_i \not\equiv q_j$. That means that we get infinitely many different states, contradicting that the number of states in \mathcal{D} is final.

6.3 Section iii

In this section we are to prove or refute the following claim: If L is accepted by a DBA then the number of states in a minimal DBA is equivalent to the number of equivalence classes in \equiv_L . <u>Claim: The claim is incorrect</u> To prove so, we'll provide a counterexample. Let $\mathcal{D} = (\Sigma, Q, q_0, \delta, F)$ be a DBA such that:

$$Q = \{q_1, q_2\}$$

$$q_0 = q_1$$

$$\delta(q_1, b) = q_1 ; \ \delta(q_1, a) = q_2$$

$$\delta(q_2, b) = q_1 ; \ \delta(q_2, a) = q_2$$

$$F = \{q_2\}$$

Let us draw \mathcal{D} :

Let $L = \Sigma^* a^{\omega}$. One can see that $[\![\mathcal{D}]\!] = L$, as in the language \mathcal{D} accepts is the language of all words that have infinite *a*'s in them. Since the condition of infinite *a*' must be checked with an accepting state, there has to be an additional state for words that does not have infinite *a*' in them. So the minimal number of states to accept *L* is 2 - the same number as in \mathcal{D} and so it is a minimal DBA for *L*. Since \mathcal{D} only accepts words with infinite *a*'s, it has only one equivalence class, which is less that the number of states in a minimal DBA that accepts it. So the claim is incorrect.